VOLVER

Share

DESCIFRAN EL MECANISMO QUE AJUSTA EL NÚMERO DE NEURONAS AL TAMAÑO CORPORAL


02 de septiembre de 2010

Un equipo internacional, entre los que se encuentran investigadores del Consejo Superior de Investigaciones Científicas (CSIC), ha descubierto por qué las neuronas del sistema nervioso periférico –que forman los ganglios y nervios que se extienden hacia los distintos órganos corporales- son producidas en grandes cantidades y posteriormente sometidas a un proceso de muerte neuronal durante el desarrollo embrionario. La investigación, que aparecerá publicada en el próximo número de la revista Nature, desvela las claves de este mecanismo crucial en la evolución de los vertebrados.

Décadas de trabajo con aves y roedores han revelado que, en la etapa temprana de desarrollo embrionario, las neuronas del sistema nervioso periférico son producidas en mayor cantidad de la necesaria para que su número se ajuste posteriormente al tamaño del órgano o tejido que inervan. Sólo las células mejor “adaptadas” sobreviven, o lo que es lo mismo, sólo las que cuentan con la acción de dos proteínas neurotróficas, el llamado factor de crecimiento nervioso (NGF) y la neurotrofina-3 (NT3), consiguen sortear esta selección.

Los investigadores han constatado en células madre embrionarias y en embriones de ratón que la clave se encuentra en dos de los receptores de NGF y NT3, en concreto, en las tirosina quinasas TrkA y TrkC, que inducen la muerte de neuronas en ausencia de NGF y NT3. “Sin embargo, hemos observado que otro receptor, el TrkB, mayoritario en el sistema nervioso central, no induce muerte neuronal”, explica José María Frade, del Instituto Cajal (CSIC), uno de los autores del estudio.

En el trabajo, los científicos proponen que el mecanismo neurotrófico clásico promovido por NGF y NT3 en el sistema nervioso periférico surge en la evolución de los vertebrados de manera pareja a la diversificación de los receptores Trk. “En los antecesores directos de los vertebrados se observa la existencia de un único receptor Trk. Por ello, lo más probable es que durante la evolución haya habido una duplicación, dando lugar a TrkB y al antecesor de TrkA/TrkC. Este último, probablemente ya capaz de promover muerte neuronal en los primeros vertebrados, ha sido duplicado de nuevo dando lugar a los receptores TrkA y TrkC, un proceso evolutivo que ha ido parejo a la adquisición de nuevos tipos neuronales en el sistema nervioso periférico”, detalla el científico del CSIC.

El estudio sugiere además una explicación a los diferentes pronósticos asociados a los tumores derivados de la cresta neural, en concreto, los neuroblastomas, que son la causa más frecuente de cáncer sólido extracraneal en los niños. “Se sabe que los neuroblastomas que expresan TrkA o TrkC tienen mejor pronóstico que aquellos que expresan TrkB, probablemente por el efecto que hemos demostrado”, agrega Frade.

* V. Nikoletopoulou, H. Lickert, J. M. Frade, C. Rencurel, P. Giallonardo, L. Zhang, M. Bibel, Y. Barde. Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature (2010)


Share

Últimas publicaciones

La Fundación Descubre integra la igualdad como eje transversal con la aprobación de su Plan
Andalucía | 15 de septiembre de 2025

El objetivo del Plan, con una vigencia de cinco años, es garantizar la plena igualdad de trato y oportunidades de mujeres y hombres, consolidando un camino ya emprendido por la organización, promovida por la Consejería de Universidad, Investigación e Innovación

Sigue leyendo
La exposición ‘Paseo Matemático al-Ándalus’ de la Fundación Descubre llega a Palma del Río
Córdoba, Palma del Río | 11 de septiembre de 2025

El Espacio Creativo Cultural Santa Clara del Ayuntamiento de Palma del Río acoge la exposición ‘Paseo Matemático al-Ándalus’ de la Fundación Descubre / Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía, una muestra que podrá visitarse hasta el próximo 14 de octubre.

Sigue leyendo
Desarrollan un método para descifrar cómo interactúan las regiones del cerebro
Málaga | 10 de septiembre de 2025

Un equipo de investigación de la Universidad de Málaga presenta una herramienta estadística para identificar de forma precisa conexiones cerebrales incluso cuando la señal está distorsionada e incompleta. Este modelo es aplicable a contextos clínicos como el estudio de enfermedades neurodegenerativas como el Alzheimer o el Parkinson, el procesamiento del lenguaje o el desarrollo neurotecnológico.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido