VOLVER

Share

Investigadores españoles reformulan el funcionamiento de las mitocondrias

Fuente: Universidad Pablo de Olavide


27 de junio de 2013
El catedrático de la Olavide Plácido Navas

El catedrático de la Olavide Plácido Navas

Un equipo de investigadores españoles liderado por el doctor José Antonio Enríquez, del Centro Nacional de Investigaciones Cardiovasculares (CNIC), publica hoy en Science un hallazgo que, con toda seguridad, hará modificar los libros de textos de bioquímica, ya que supone una completa reformulación del funcionamiento de la mitocondria y explica cómo las células generan energía a partir de los nutrientes.

El CABD, Centro Andaluz de Biología del Desarrollo (Universidad Pablo de Olavide de Sevilla-CSIC) -en concreto el catedrático de la UPO Plácido Navas y la doctora María Ángeles Rodríguez-Hernández-, ha participado en este trabajo desarrollado por el CNIC y la Universidad de Zaragoza, con la colaboración de los hospitales universitarios de La Princesa en Madrid y Miguel Servet de Zaragoza, así como las universidades de Oviedo y Santiago de Compostela.

Este hallazgo supone la confirmación de una propuesta realizada en 2008 por los mismos investigadores consecuencia de observaciones que no podían ser explicadas por el modelo que hasta entonces describía cómo funcionaba la mitocondria, una parte del interior de las células que, entre otras tareas, se encarga de extraer y convertir la energía de los alimentos en formas utilizables por las células para sus propios procesos vitales.

El consumo, digestión y asimilación de alimentos en el cuerpo tiene por objeto final alimentar a todas y cada una de las células que lo constituyen. En todo este proceso, que ocurre en el exterior de las células, se consume energía, pero es necesario para desmenuzar y romper los componentes de los alimentos en compuestos sencillos como la glucosa de los azúcares, los amino ácidos de las proteínas y los ácidos grasos de las grasas. Estos componentes desmenuzados pueden entrar en las células y ser procesados en sus mitocondrias para generar energía.

“Entender cómo ocurre la generación de energía en las células es fundamental para entender la vida y, durante gran parte del siglo pasado, fue el objeto de estudio de la bioquímica. A finales de los 70 y principios de los 80 se consideró que el misterio de cómo la mitocondria realizaba esta tarea estaba resuelto y en los 90 se obtuvo un increíble detalle de las estructuras moleculares que lo realizaban. Se consideraba el proceso mejor conocido y mejor entendido de cuantos sucedían en la célula”, explica el doctor Enríquez, investigador principal del estudio publicado en Science.

La descripción de las enfermedades mitocondriales cambió por completo esta percepción. Se constató que la formidable acumulación de conocimiento sobre este proceso resultaba insuficiente para entender las manifestaciones y síntomas de estas enfermedades. Los investigadores y médicos no podían anticipar por qué, dónde, cómo, cuándo y quién desarrollaría estas enfermedades, ni cuán severas podría llegar a ser. Así mismo, no ha permitido desarrollar tratamientos para las mismas. Esta realidad puso de manifiesto dos aspectos fundamentales. Por un lado, que el conocimiento de la función mitocondrial era mucho menor de lo que se creía y por otro que los modelos desarrollados para explicarla eran muy incompletos. Por esta razón durante los últimos 10 años se han acumulado estudios orientados a entender mejor este proceso. El científico añade que el trabajo supone que el modelo formulado en 2008 por su grupo es correcto. “Se redefine uno de los procesos fundamentales para la vida en todas las células”, subraya.

La ruptura de las moléculas de alimento se almacena en la célula en forma de electrones de alta energía, pero en dos tipos de molécula: las N o las F, cuya proporción varía según el tipo de alimento. Estas moléculas no pueden liberar energía de forma fácil y universal para desarrollar los procesos necesarios para la supervivencia, mantenimiento, crecimiento y división celulares ni para su coordinación.

Es ahí donde entra en juego la mitocondria que, a través de cinco máquinas moleculares, los complejos I, II, III, IV y V, convierte la energía en una molécula utilizable universalmente, llamada ATP. Hasta hace muy poco se aceptaba que estos complejos “nadaban” libres en la membrana interna de la mitocondria y no interaccionaban entre sí, algo que se ha demostrado incorrecto en el trabajo realizado por los investigadores españoles. “Los cinco complejos no se mueven siempre de forma independiente en la membrana” explica el doctor Enríquez. “Por el contrario, se asocian físicamente en combinaciones distintas denominadas supercomplejos respiratorios (SCI). Nuestro trabajo explica las consecuencias funcionales de estas interacciones”.

Según se detalla en el artículo, estas asociaciones son dinámicas y se modifican para optimizar la extracción de energía de las moléculas F y N dependiendo de su abundancia, es decir, dependiendo de los alimentos que se hayan consumido. En el trabajo de Science se describen estos supercomplejos y sus funciones. “Lo que quiere decir es que el sistema para optimizar la extracción de energía de los alimentos es mucho más versátil de lo que se creía y puede modularse de formas inesperadas para ajustar a la composición de los alimentos de la dieta o especializarse para funciones específicas en tipos celulares concretos”, señala.

En el artículo también se detalla la función relevante y versátil en este modelo del coenzima Q cuya deficiencia causa un síndrome muy complejo de patología mitocondrial. Estos resultados abren las puertas para explicar la patología asociada a la deficiencia secundaria de coenzima Q debida a mutaciones del ADN mitocondrial.

Por último, los investigadores detallan que, fruto de su estudio, se ha llevado a cabo un “descubrimiento inesperado”. Así, la estirpe de ratón más utilizada en estudios genéticos de laboratorio tiene el mecanismo de generación de supercomplejos respiratorios dañado, por lo que se han planteado dudas de cómo interpretar y trasladar a los humanos las observaciones realizadas en estos modelos de ratón.


Share

Últimas publicaciones

Hallada una nueva especie de murciélago desconocida en Europa
Sevilla | 19 de febrero de 2019

Se trata del murciélago ratonero críptico (Myotis crypticus), que hasta ahora se confundía en Iberia con otra especie estrechamente emparentada, el murciélago de Escalera (Myotis escalerai), de la cual solo se diferencia por caracteres externos sutiles.

Sigue leyendo
Descubren que los átomos tienden a incorporarse a las partes más altas de la superficie
Sevilla | 19 de febrero de 2019

Investigadores de la Universidad de Sevilla, en colaboración con la Universidad de Cádiz, la Universidad Complutense y los Institutos de Ciencia de Materiales de Sevilla (US-CSIC) y Madrid (CSIC), han descrito un mecanismo de agregación atómica basado en el aforismo de “el rico se hace más rico y el pobre se hace más pobre”. 

Sigue leyendo
Estudian los hábitos de consumo y la evocación emocional del vino de Jerez
Cádiz | 19 de febrero de 2019

Este trabajo de investigación, en el que han participado 2.189 personas relacionadas con la Universidad de Cádiz, evidencia las diferencias en el consumo y la percepción de la población joven gaditana.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Este sitio web utiliza cookies para mejorar tu experiencia. Continuando la navegación aceptas su uso. Más información

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close