Nobel de Medicina por descifrar el mecanismo de los relojes biológicos
Fuente: SINC
Los organismos vivos, incluidos los humanos, tienen un reloj biológico interno que les ayuda a anticiparse y adaptarse al ritmo regular del día. Jeffrey C. Hall, Michael Rosbash y Michael W. Young llevan años trabajando para descifrar su funcionamiento interno. Sus descubrimientos, que hoy le han valido el Premio Nobel de Medicina y Fisiología, explican cómo las plantas, los animales y los seres humanos adaptan su ritmo biológico para que esté sincronizado con la rotación de la Tierra.
Utilizando moscas de la fruta, los tres ganadores aislaron un gen que controla el ritmo biológico diario normal
Los tres expertos de instituciones estadounidenses, Hall –profesor de la Universidad de Maine–, Rosbash –en la Universidad Brandeis– y Young –investigador en la Universidad Rockefeller–, mostraron cómo este gen codifica una proteína que se acumula en la célula durante la noche, y luego se degrada durante el día.
Posteriormente, identificaron más componentes proteicos de esta maquinaria y dieron con el mecanismo que controla dicho reloj interno de la célula. En la actualidad se sabe que estos relojes biológicos funcionan de la misma forma en otros organismos multicelulares, incluyendo los humanos.
El ritmo circadiano es el encargado de regular el comportamiento, los niveles hormonales, el sueño, la temperatura corporal y el metabolismo. Y, de la misma forma, su desajuste es responsable de varios trastornos, como el conocido jet lag.
Un reloj autoregulable
El siguiente paso fue comprender cómo se podrían generar y mantener esas oscilaciones circadianas. Hall y Rosbash plantearon la hipótesis de que la proteína PER bloqueaba la actividad del gen descrito.
Los expertos propusieron que, mediante un circuito inhibitorio de retroalimentación, la proteína PER podría prevenir su propia síntesis y, por tanto, regular su nivel en un ritmo cíclico continuo.
Sin embargo, aún faltaban algunas piezas del rompecabezas. Hall y Rosbash habían demostrado que la proteína PER se acumulaba en el núcleo durante la noche, pero quedaba por saber cómo llegaba hasta allí.
En 1994, Young descubrió un segundo gen de este reloj biológico, que codifica la proteína TIM, necesaria para un ritmo circadiano normal. Así, demostró que cuando TIM se une a PER, las dos proteínas son capaces de entrar en el núcleo de la célula donde bloquean la actividad del gen, cerrando el circuito inhibitorio de retroalimentación.
Los hallazgos de los tres laureados establecieron principios mecánicos clave del reloj biológico. Es más, durante los años siguientes se aclararon otros componentes moleculares del mecanismo de dicho reloj, lo que explicaba su estabilidad y función.
Por ejemplo, se identificaron las proteínas adicionales requeridas para la activación del gen, así como para el mecanismo por el cual la luz puede sincronizar el reloj.
Últimas publicaciones
Un equipo científico de la Estación Biológica de Doñana (EBD-CSIC) ha analizado los datos de 38 años de censos de aves en Doñana y el Paleártico Occidental, junto con imágenes satélite y datos meteorológicos de 432 humedales de importancia internacional. La investigación revela que 9 de las 15 especies han experimentado declives asociados con la pérdida de áreas inundadas en la marisma del Parque Nacional de Doñana.
Sigue leyendoLa iniciativa Iron NPE, en la que participa un equipo de la Escuela Técnica Superior de Ingeniería, tiene como objetivo diseñar y desarrollar las arquitecturas de los nuevos sistemas sostenibles de hidrógeno para que sean capaces de suministrar la potencia auxiliar a un avión. También busca desarrollar una célula de ensayos en tierra completa, que permita realizar toda la batería de tests necesarios para calificar y probar los nuevos sistemas.
Sigue leyendoInvestigadores del ibs.GRANADA y de la UGR han publicado en la revista Exposure and Health un estudio que identifica posibles asociaciones entre la exposición a combinaciones de metales y el riesgo de sobrepeso y obesidad en población infantil. Los expertos han analizado cómo la exposición a estos metales, que puede producirse a través de alimentos, agua o aire, influye en el desarrollo de estas condiciones.
Sigue leyendo