VOLVER

Share

Tecnología española en los ojos de la misión Rosetta

Fuente: SINC


18 de febrero de 2014
Sistema de cámaras OSIRIS. / UPM

Sistema de cámaras OSIRIS. / UPM

La Universidad Politécnica de Madrid ha participado en el desarrollo de OSIRIS, uno de los instrumentos con los que la nave Rosetta fotografiará el cometa al que se dirige. El Instituto Nacional de Técnica Aeroespacial (INTA) y el Instituto de Astrofísica de Andalucía también participan en este proyecto.

La misión internacional Rosetta estudiará los cuerpos primitivos del sistema solar para conocer su origen y evolución. Para conseguirlo, la Agencia Espacial Europea (ESA) utilizará la técnica de sobrevuelo cercano que, mediante un vehículo orbitador alrededor del cometa 67P/Churyumov-Gerasimenko, analizará su entorno gracias a su serie de instrumentos de teledetección y una sonda destinada a atracar en el núcleo del cometa.

En el instrumento Optical, Spectroscopic and Infrared Remote Imaging System (OSIRIS), uno de los once embarcados en el orbitador, tiene una importante participación España. En particular, la Universidad Politécnica de Madrid (UPM) a través del Instituto de Microgravedad Ignacio da Riva (IDR), que ha contado con el Instituto Nacional de Técnica Aeroespacial (INTA) como socio tecnológico.

Compuesto por dos cámaras de alta resolución, OSIRIS es el encargado de tomar las imágenes de los asteroides, así como del núcleo del cometa a lo largo de toda la misión. Esta se iniciará cuando este se encuentre a una distancia de más de cinco unidades astronómicas del Sol en un ambiente extremadamente frío. Durará hasta después de su paso por el perihelio, extremadamente caliente, a mediados de 2015.

El sistema de cámaras dual contiene una cámara de campo estrecho (narrow-angle camera) de alta resolución y optimizada para el estudio del núcleo del cometa, y otra de campo ancho (wide-angle camera) para observar la parte interior del cometa e investigar la emisión de polvo y gas directamente por encima de su superficie.

El diseño térmico global y análisis estructural de OSIRIS ha sido el trabajo del IDR en el consorcio europeo, además del aprovisionamiento de los elementos de control térmico en colaboración con CASA-DE (en la actualidad denominada Airbus Defence & Space).

“El diseño del subsistema de control térmico en vehículos espaciales es el encargado garantizar que los delicados componentes optomecánicos y electrónicos estén en todo momento dentro del rango de temperaturas adecuado para su óptimo funcionamiento, tarea compleja en este tipo de misiones en las que el vehículo se encuentra sometido a condiciones ambientales muy severas”, explican en el IDR. “El análisis estructural forma parte de las tareas de verificación de que el instrumento va a ser capaz de soportar las elevadas cargas mecánicas durante el lanzamiento”.

En el desarrollo de OSIRIS participan también el Instituto Max Planck para la Investigación del Sistema Solar (Alemania) –líder del consorcio–, el Centro Europeo de Investigación y Tecnología Espacial de la Agencia Espacial Europea (ESA-ESTEC), el Laboratorio de Astronomía Espacial de Marsella (Francia), la Universidad de Padua (Italia), el Observatorio Astronómico de Uppsala (Suecia) y el Instituto de Astrofísica de Andalucía.

El pasado 20 de enero, tras un largo periodo de vuelo en hibernación (2011-2014), la nave Rosetta de la ESA se despertó y conectó con la Tierra para empezar a preparar las operaciones de aproximación y posterior exploración del cometa 67P/Churyumov-Gerasimenko. Para llegar a esta situación, la misión Rosetta requirió un viaje espacial de 10 años, ya que se lanzó en marzo de 2004.

En este tiempo han sido necesarias tres asistencias gravitatorias en la Tierra (2005, 2007 y 2009) y una en Marte (2007), hasta alcanzar al cometa a una distancia del Sol unas cinco veces mayor que la distancia media entre el Sol y la Tierra. Será el próximo mes de agosto cuando entre en contacto con el cometa y está prevista la finalización de la misión el 31 de diciembre de 2015.

IDR en otras misiones

No es Rosetta el único hito espacial internacional con huella de la UPM. En la actualidad, son responsabilidad del IDR los subsistemas térmico y estructural  del instrumento EPD (energetic particle detector) y los subsistemas térmico y estructural de Solar Orbiter Polarimetric and Helioseismic Imager (SO/PHI), ambos de la misión Solar Orbiter de la ESA.

También interviene en el desarrollo de los subsistemas térmico y estructural de Solar Occultation in the Infrared and Nadir and Occultation for Mars Discovery (NOMAD), un espectrómetro de alta resolución en el infrarrojo-visible-ultravioleta, para el orbitador de la misión ExoMars, de exploración de Marte liderada por la ESA. En esta misma misión al planeta rojo, el IDR participa en dos elementos para el vehículo de exploración (rover): internal Optical Head (iOH) y Spectrometer Unit (SPU), del espectómetro láser Raman, ambos responsabilidad del INTA.


Share

Últimas publicaciones

Descubre organizará más de 300 Cafés con Ciencia en Andalucía en los próximos 12 meses para acercar la investigación a la ciudadanía
Andalucía | 26 de julio de 2024

En su 15ª edición, esta actividad de divulgación científica contará con encuentros sobre salud mental, Cafés dedicados al colectivo LGTBI y un Café con Ciencia para conmemorar el Año Cajal dedicado a Ramón y Cajal. La organización de los Cafés con Ciencia se puede solicitar por correo electrónico cafeconciencia@fundaciondescubre.es hasta el 15 mayo de 2025.

Sigue leyendo
Patentan pastillas de soja biodegradables para el abono controlado de cultivos
Huelva, Sevilla | 25 de julio de 2024

Un equipo de investigación de las universidades de Sevilla y Huelva ha creado unas tabletas a partir de proteínas de soja que liberan progresivamente nutrientes a las plantas. El nuevo producto permite un crecimiento saludable, optimiza la producción agrícola y evita la contaminación de suelos y aguas subterráneas.

Sigue leyendo
Muestran la escasa importancia del mosquito tigre en la transmisión de la malaria aviar
Sevilla | 25 de julio de 2024

El equipo científico, formado por expertos de la Estación Biológica de Doñana (EBD-CSIC), del Consejo Superior de Investigaciones Científicas (CSIC); la Universidad de Granada y el Nature Research Centre de Lituania ha analizado el papel de este díptero como vector de patógenos de la malaria aviar. El estudio apunta a la preferencia del mosquito tigre por alimentarse de mamíferos como una de las posibles causas de la baja relevancia en la dispersión de la enfermedad.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido