VOLVER

Share

Desarrollan un modelo predictivo de ocupación de camas en las UCI de los hospitales andaluces

La herramienta matemática diseñada por investigadores de la Universidad de Cádiz está basada en una simulación de eventos discretos, unida a una predicción de futuros ingresos hospitalarios por causa de COVID-19. Así, para este modelo predictivo, se estiman las distribuciones de tiempos de estancia en UCI de los pacientes ya hospitalizados, además de la fracción de los mismos que requieren cuidados intensivos. El objetivo del modelo es la predicción de ocupación de camas UCI a varias semanas vista. 

Fuente: Universidad de Cádiz


Cádiz |
17 de abril de 2020

Investigadores de la Universidad de Cádiz trabajan en el desarrollo de una herramienta predictiva de ocupación de camas en Unidades de Cuidados Intensivos (UCI) de la red de hospitales de Andalucía. Su objetivo es ayudar de forma importante a la toma de medidas preventivas, como la creación de hospitales de campaña o la asignación de recursos hospitalarios, en el caso de que se originara un rebrote del número de pacientes afectados por COVID-19; algo que podría sobrecargar el Sistema Andaluz de Salud (SAS), como ha ocurrido en otras comunidades autónomas.

Esta herramienta ya ha sido puesta a disposición de la Junta de Andalucía y podría ser esencial para la toma de medidas preventivas y evitar una sobrecarga en el SAS en caso de que hubiese un rebrote de la pandemia.

Esta iniciativa ha sido posible gracias al trabajo del investigador David Gómez-Ullate, perteneciente al Comité Español de Matemáticas (CEMat), dedicado a coordinar la Acción matemática contra el coronavirus, y que es miembro del grupo científico creado para el mismo fin en la European Mathematical Society. Gómez-Ullate ha trabajado en esta ocasión junto con investigadores del grupo UCA Datalab y el ICMAT– CSIC (Instituto de Ciencias Matemáticas); miembros del departamento de Estadística e Investigación Operativa de la UCA, dirigido por el profesor Alfonso Suárez-Llorens; e investigadores del Instituto de Matemáticas de la Universidad de Sevilla.

Para entender bien este trabajo hay que tener en cuenta que la herramienta está basada en una simulación de eventos discretos, unida a una predicción de futuros ingresos hospitalarios por causa de COVID-19. Así, para este modelo predictivo, se estiman las distribuciones de tiempos de estancia en UCI de los pacientes ya hospitalizados, además de la fracción de los mismos que requieren cuidados intensivos.

El objetivo del modelo es la predicción de ocupación de camas UCI a varias semanas vista. El estudio de las distribuciones de tiempos entre la aparición de síntomas y hospitalización o ingreso en UCI puede ser igualmente útil para estimar el número real de infectados en Andalucía; dato esencial para poder alimentar los modelos epidemiológicos y diseñar estrategias efectivas de salida del confinamiento.

Gráfico de la ocupación de camas en la UCI de hospitales.

Esta herramienta matemática reporta las predicciones para cada provincia durante los próximos siete días. Los investigadores trabajan en actualizar las predicciones en un informe diario y mejorarlas con estimaciones más precisas de las distribuciones de tiempos. Para ello, se han establecido contactos con la Junta de Andalucía para la cesión de datos anonimizados de pacientes con su evolución clínica, así como para poner a disposición de las autoridades correspondientes este modelo predictivo.

Se debe indicar que herramientas similares se han desarrollado en la Universidad de Stanford, el Servicio Nacional de Salud (en inglés National Health Service – NHS) de Reino Unido o, a nivel nacional en otras comunidades autónomas como Navarra o el País Vasco. No obstante, la especificidad de la situación andaluza requiere que las distribuciones sean ajustadas a los datos observados en Andalucía, por lo que para el estudio preliminar han colaborado también diversos investigadores que han cedido datos observados en pacientes de otras comunidades. “Disponer de estos datos permitiría un mejor afinamiento de las predicciones y una herramienta más eficaz para la toma de decisiones”, como sostienen desde la UCA.

Las matemáticas aplicadas, la estadística y la ciencia de datos también juegan un papel importante en la lucha contra la expansión del coronavirus, ya que gracias a ellas se pueden modelar posibles estrategias, prediciendo el comportamiento futuro de la epidemia o proporcionando soluciones logísticas que optimicen el uso de los recursos disponibles.


Share

Últimas publicaciones

Demuestran por primera vez en el mundo una drástica reducción de la mortalidad por melanoma cutáneo
04 de diciembre de 2020

Los especialistas han llegado a esta conclusión después de analizar la historia de más de 26.000 personas fallecidas por este tumor en los últimos 40 años. El melanoma cutáneo es el cáncer cutáneo con mayor mortalidad. Hasta fechas recientes, todas las series históricas ponían de manifiesto un crecimiento constante de las muertes. Sin embargo, en la última década se han desarrollado una serie de fármacos inmunoterápicos que han mejorado sustancialmente el pronóstico de estos pacientes, incluyendo aquellos que se encuentran en fase de metástasis, el estadio más avanzado.

Sigue leyendo
Desarrollan un sistema de inteligencia artificial que permite extraer información relevante de informes radiológicos relacionada con la COVID-19
Jaén | 04 de diciembre de 2020

Investigadores del grupo SINAI de la Universidad de Jaén, junto con radiólogos de la clínica HT Médica, han creado un sistema que proporcionaría una gran ayuda para apoyar al personal médico a detectar trastornos relacionados con la enfermedad, ya que se podría utilizar para predecir automáticamente si un paciente tiene hallazgos radiológicos compatibles con la misma.

Sigue leyendo
La nebulosa de la Mantarraya, la más joven conocida, se apaga
Granada | 04 de diciembre de 2020

Observaciones con el Telescopio Espacial Hubble muestran cómo esta joven nebulosa ha perdido brillo y cambiado de forma en apenas dos décadas. El ciclo de vida de las estrellas maneja escalas de tiempo que pueden parecer eternas: una estrella tarda millones de años en nacer, y su etapa adulta se extiende miles de millones de años.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Este sitio web utiliza cookies para mejorar tu experiencia. Continuando la navegación aceptas su uso. Más información

Los ajustes de cookies de esta web están configurados para "permitir cookies" y así ofrecerte la mejor experiencia de navegación posible. Si sigues utilizando esta web sin cambiar tus ajustes de cookies o haces clic en "Aceptar" estarás dando tu consentimiento a esto.

Cerrar