VOLVER

Share

Un nuevo modelo permite predecir la radiación solar para mejorar la gestión de las plantas fotovoltáicas

Una de las novedades de este estudio de la Universidad de Córdoba es que permite realizar estimaciones de radiación recibida sobre planos inclinados, y no sólo de forma horizontal, tal y como se venía haciendo habitualmente. Esto posibilita jugar con la inclinación de las placas solares para que, en función de la predicción, puedan orientarse a un determinado ángulo y aprovechar así la energía de forma más eficiente.

Fuente: Universidad de Córdoba


Córdoba |
23 de marzo de 2021

A diferencia de lo que ocurre en los sistemas de producción convencionales, en los que la energía se genera de forma estable, las plantas solares se caracterizan por un carácter más intermitente. Por ello, disponer de datos precisos sobre la previsión de la radiación solar es fundamental para una buena planificación y gestión de los tanques de almacenamiento.

Investigadores del grupo AYRNA de la Universidad de Córdoba (UCO), liderado por el científico César Hervás.

En este sentido, el grupo de investigación AYRNA de la Universidad de Córdoba (UCO), liderado por el investigador César Hervás, ha ideado un nuevo modelo que permite predecir la radiación solar y cuyos resultados podrían ser de utilidad para la toma de decisiones en las plantas fotovoltaicas. «Cuando se usan este tipo de energías renovables que dependen de componentes aleatorias, se exige una predicción sobre cuánta energía se va a suministrar en la red para poder incluirla en la planificación del sistema eléctrico y que la producción programada iguale a la demanda esperada», explica el investigador Pedro Antonio Gutiérrez, uno de los autores de la investigación.

Una de las novedades del estudio, en el que también participa el investigador de la UCO Antonio Gómez Orellana y en el que colabora la Universidad de Ciencias y Tecnología Houari Boumediene (Argelia), es que permite realizar estimaciones de radiación recibida sobre planos inclinados, y no sólo de forma horizontal, tal y como se venía haciendo habitualmente. Esto posibilita jugar con la inclinación de las placas solares para que, en función de la predicción, puedan orientarse a un determinado ángulo y aprovechar así la energía de forma más eficiente.

Concretamente, el sistema permite realizar esta estimación con una hora de antelación, un intervalo de tiempo que según destacan desde el grupo de investigación «es suficiente para facilitar la gestión en la industria fotovoltaica y saber qué cantidad de energía exacta se va a suministrar a la red». Además, según indican los resultados, el margen de error de la predicción «es, en la mayoría de los casos, más bajo que el alcanzado por otros estudios similares».

Redes neuronales evolutivas

El modelo matemático empleado para realizar las predicciones se sustenta en tres tipos de redes neuronales evolutivas, una rama de la inteligencia artificial en la que el grupo de investigación posee una dilatada experiencia. La clave es que el algoritmo de aprendizaje evoluciona iterativamente los modelos a lo largo del proceso para minimizar el margen de error, utilizando para ello operadores de mutación. Se trata de un sistema basado en los principios de la evolución biológica, sólo que, en lugar de seleccionar los mejores genes, opta por los mejores parámetros para obtener los mejores resultados.

La investigación, concretamente, se enmarca dentro del proyecto Hamlet, una iniciativa en la que participan las universidades de Córdoba y Alcalá de Henares y que tiene como objetivo desarrollar algoritmos predictivos para abordar problemas relacionados con la salud y el medioambiente. https://doi.org/10.1016/j.jclepro.2020.125577

Referencias bibliográficas:

B. Amiri, A.M. Gómez-Orellana, P.A. Gutiérrez, R. Dizene, C. Hervás-Martínez y K. Dahmani. «A Novel Approach for Global Solar Irradiation Forecasting on Tilted Plane using Hybrid Evolutionary Neural Networks», Journal of Cleaner Production, Vol. 287, marzo 2021, pp. 125577.


Share

Últimas publicaciones

Descubren un nuevo gen que hace resistente al girasol contra la planta parásita jopo
Córdoba | 27 de mayo de 2024

Un equipo de investigación del Instituto de Agricultura Sostenible (IAS-CSIC) ha descrito una pieza del ADN que impide que las raíces de este cultivo sean infectadas por uno de sus patógenos más letales, el jopo. Además de determinar su posible función y la localización en su genoma, ha demostrado la posibilidad de transferirlo como mecanismo natural de defensa desde una especie silvestre a otras variedades de siembra.

Sigue leyendo
Un estudio del CSIC revela que zorzales, codornices y pinzones son las especies de aves más propensas a tener garrapatas
Sevilla | 27 de mayo de 2024

Un nuevo estudio liderado por la Estación Biológica de Doñana – CSIC ha analizado la prevalencia de garrapatas en más de 600.000 aves capturadas a lo largo de 17 años. Los resultados podrán ayudar a identificar en qué especies se deberían focalizar los esfuerzos de vigilancia de enfermedades zoonóticas. Los resultados de este trabajo se han publicado en la revista One Health.

Sigue leyendo
Una nueva investigación liderada por la UCO revela por primera vez que las cianobacterias marinas se comunican
Córdoba | 27 de mayo de 2024

La revista Science Advances acaba de publicar una investigación que da un giro a la forma de entender la cianobacterias, indispensables para el sustento de la vida. El estudio evidencia que estos organismos no operan de forma aislada, sino que interaccionan físicamente a través de unos nanotubos que actúan como puente de intercambio entre células.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido