Una ‘app’ obtendrá algoritmos de detección temprana de COVID-19 con sonidos de pacientes
Esta aplicación, desarrollada por investigadores de la Universidad de Cambridge de Reino Unido, utiliza técnicas de aprendizaje automático para ayudar a saber si una persona está afectada por el coronavirus basándose en el sonido de su voz, su respiración y su tos. Los datos solo se utilizarán con fines de investigación y la app no proporcionará ningún tipo de asesoramiento médico, aclaran desde la institución.
Fuente: Agencia SINC
La COVID-19 es una enfermedad respiratoria y los sonidos que hacen las personas que la tienen son muy específicos. Por ello, a Cecilia Mascolo, investigadora de la Universidad de Cambridge, se le ha ocurrido poner en marcha COVID-19 Sounds App, una aplicación que recopila datos para desarrollar algoritmos de machine learning que ayuden a detectar automáticamente si una persona está afectada por coronavirus basándose en el sonido de la voz, la respiración y la tos.

La grabación de sonidos de la voz, tos y respiración de pacientes servirá para desarrollar nuevos algoritmos de detección temprana. / Pixabay.
“Todavía hay mucho que no sabemos sobre este virus y la enfermedad que causa, y en una situación de pandemia como la actual, cuanta más información fiable se pueda obtener, mejor”, dice Mascolo, que trabaja en el departamento de Ciencias Computacionales y Tecnología de la universidad británica. En el desarrollo de la app han colaborado también investigadores de física del Cavendish Laboratory y expertos en biología respiratoria e infección pulmonar.
La investigadora explica que “las personas que crean tener COVID-19 pueden instalar la aplicación en su teléfono móvil e introducir datos sobre la evolución de sus síntomas. Se les pedirá que graben algunas toses y algunos segundos de respiración, así como que respondan a preguntas sobre su temperatura corporal, frecuencia de la tos, frecuencia del pulso, sexo, edad y condiciones médicas existentes”.
Además de recoger información demográfica y médica básica de los usuarios y las grabaciones de voz, respiración y tos a través del micrófono del teléfono, COVID-19 Sounds App también pregunta a los usuarios si han dado positivo en el test de coronavirus.
Datos abiertos para investigación
Esta app no hará un seguimiento de los usuarios y solo recogerá datos de localización cuando las personas la estén utilizando. Estos datos se almacenarán en los servidores de la universidad y se utilizarán únicamente con fines de investigación. Además, no proporcionará ningún tipo de asesoramiento médico, aclaran desde la institución.
Una vez que haya completado su análisis, el equipo científico de Cambridge liberará el conjunto de datos a otros investigadores. Esta información podría ayudar a arrojar luz sobre la progresión de la enfermedad y si la complicación respiratoria tiene o no relación en el historial médico, por ejemplo.
Mascolo comenta que “una de las cosas más comunes que notan los médicos en estos pacientes es la manera en la que se quedan sin aliento cuando hablan, así como una tos seca, y los intervalos de sus patrones de respiración”.
La investigadora agrega que “hay muy pocos conjuntos de datos de sonidos respiratorios, así que para hacer mejores algoritmos que puedan ser usados para la detección temprana necesitamos muestras de tantos participantes como podamos conseguir”.
“Incluso si no obtenemos muchos casos positivos de coronavirus, podríamos encontrar vínculos con otros problemas de salud”, continúa la experta.
La aplicación web ya está disponible para los navegadores Chrome y Firefox. Las versiones para Android e iOS estarán listas pronto, señala la universidad.
El estudio ha sido aprobado por el comité de éticadel departamento de Ciencias Computacionales y está financiado parcialmente por el Consejo Europeo de Investigación (ERC), a través del proyecto EAR. Cecilia Mascolo obtuvo esta ayuda Advanced Grant del ERC en 2019 para el desarrollo de aplicaciones de móviles para salud y va a utilizar parte en este nuevo proyecto.
Últimas publicaciones
El modelo de control, ideado por un equipo de la Universidad de Córdoba, permite reducir el desperdicio de un recurso esencial y limitado y alargar la vida útil de las tuberías. El modelo predictivo resultante, escalable a otras redes similares, permite superar una gran limitación que encuentran las empresas gestoras de redes de distribución de agua, como es la ausencia de datos en tiempo real que las orienten a la hora de realizar ajustes dinámicos de la presión.
Sigue leyendoEl bienestar animal así como un mayor rendimiento en cantidad y calidad han sido parte de los objetivos de este proyecto que ha contado como socios a COVAP, CETEMET, Keyter, Universidad de Córdoba y Cooperativas Agro-alimentarias de Andalucía.
Sigue leyendoEl grupo operativo INNOFINO, formado por el Consorcio ceiA3 junto a las universidades de Cádiz y de Córdoba, varios consejos reguladores andaluces así como distintas bodegas del marco de Jerez, acaban de presentar los resultados finales del proyecto en la Consejería de Agricultura, Pesca y Desarrollo Rural de la Junta de Andalucía en Sevilla.
Sigue leyendo