VOLVER

Share

Bacterias que crecen a altas temperaturas son capaces de potenciar el reciclaje de nutrientes del suelo

Fuente: CSIC


29 de abril de 2014
 Ciertas bacterias termófilas en suelos que crecen a altas temperaturas son capaces de potenciar el reciclaje de los elementos del suelo, fundamentalmente nitrógeno y azufre

Ciertas bacterias termófilas en suelos que crecen a altas temperaturas son capaces de potenciar el reciclaje de los elementos del suelo, fundamentalmente nitrógeno y azufre

Un equipo de investigadores del Consejo Superior de Investigaciones Científicas (CSIC) ha descubierto que ciertas bacterias termófilas en suelos que crecen a altas temperaturas son capaces de potenciar el reciclaje de los elementos del suelo, fundamentalmente nitrógeno y azufre. El hallazgo podría contribuir a diseñar métodos de fertilización biológica y evitar fertilizantes químicos innecesarios.

Según destacan los autores del estudio, el caso del azufre es muy llamativo. Hasta ahora se había observado que las bacterias regeneraban muy pobremente el azufre orgánico del suelo a temperaturas bajas (a unos 20ºC). En el estudio se ha comparado la información de genomas de las bacterias mesófilas, que crecen a temperaturas medias (inferiores a 40ºC), con las termófilas, que lo hacen a temperaturas altas,  entre 50-65ºC. “Son temperaturas que fácilmente se alcanzan en cualquier suelo andaluz en verano. Nosotros hemos llegado a medir 75ºC”, explica Juan González, Investigador Científico del CSIC en el Instituto de Recursos Naturales y Agrobiología de Sevilla, que ha realizado el estudio en colaboración con la Universidad de Évora (Portugal).

La comparativa ha mostrado la razón de esta mayor eficacia en la generación de sulfatos de las bacterias termófilas: cuentan con rutas metabólicas simultáneas dirigidas a la producción de sulfitos, cosa que explica que produzcan sulfato. Estas incluyen reacciones integradas en las rutas de degradación de los aminoácidos Metionina y Cisteina (contienen azufre) que llevan a la producción de sulfitos, según se explica en el estudio. El sulfito producido es oxidado a sulfato con la participación de sulfito oxidasas que son las enzimas claves en este paso y que están ausentes en muchas bacterias mesófilas.

El hallazgo sobre el comportamiento de las bacterias termófilas ayuda a comprender mejor la mineralización microbiana del azufre orgánico en los sistemas terrestres, que hasta ahora se conocía escasamente. Se trata de un proceso que habitualmente no se abordaba en los modelos del ciclo del azufre, ya que la mayoría de las publicaciones se centraban en transformaciones de azufre inorgánico.

Más información:

Santana, M.M., J.M. Gonzalez, M.I. Clara. 2014. Inferring pathways leading to organic-sulfur mineralization in the Bacillales. Critical Reviews in Microbiology.DOI:10.3109/1040841X.2013.877869


Share

Últimas publicaciones

Un estudio revela que solo el 16% de las áreas de gran biodiversidad goza de protección frente al tráfico marítimo
Sevilla | 26 de noviembre de 2025

Una investigación con participación de la EBD-CSIC revela una cobertura insuficiente de las Áreas Marinas Protegidas. El trabajo sienta las bases para definir políticas que gestionen de forma sostenible los desafíos ecológicos que implica el transporte marítimo.

Sigue leyendo
Los cambios ambientales del pasado impulsaron la aparición de nuevas especies
Sevilla | 25 de noviembre de 2025

Un estudio internacional en el que participa un investigador de la Universidad de Sevilla, ha analizado el caso del sudeste asiático, una de las regiones con mayor diversidad biológica del planeta, y ha identificado una nueva especie de ardilla, posiblemente la ardilla arborícola más grande del mundo.

Sigue leyendo
Revelan por primera vez un mecanismo esencial para el inicio de la vida en los vertebrados
Sevilla | 25 de noviembre de 2025

Gracias a una herramienta CRISPR que elimina el ARN, investigadores del CABD han observado por primera vez el momento en que el embrión toma el control de su desarrollo. Una modificación química permite al embrión encender su propio genoma y borrar las instrucciones heredadas de la madre para iniciar su formación.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido