VOLVER

Share

Científicos de la Universidad de Granada ganan un concurso internacional de informática sobre ‘big data’

Fuente: Universidad de Granada


04 de septiembre de 2014
En la foto del equipo aparecen los investigadores participantes en la competición. De izquierda a derecha: Sara del Río, Isaac Triguero, Victoria López, Francisco Herrera y José Manuel Benítez.

En la foto del equipo aparecen los investigadores participantes en la competición. De izquierda a derecha: Sara del Río, Isaac Triguero, Victoria López, Francisco Herrera y José Manuel Benítez.

Científicos de la Universidad de Granada, pertenecientes al grupo de investigación ‘Soft Computing y Sistemas de Información Inteligentes’ (SCI2S), han ganado la ‘ECBDL’14 Big Data Competition’, un concurso celebrado este verano en Vancouver (Canadá), en el marco del congreso internacional GECCO-2014.

Este certamen, uno de los más prestigiosos del mundo en este ámbito de investigación, premia los mejores trabajos relacionados con los ‘big data’, conjuntos de datos de un elevado tamaño cuyo volumen, diversidad y complejidad requieren el uso de nuevas arquitecturas, técnicas, algoritmos y análisis para gestionar y extraer el valor y conocimiento oculto en ellos.

La ‘ECBDL’14 Big Data Competition’ se ha centrado en esta edición en un problema de clasificación en bioinformática. En concreto, los participantes debían trabajar sobre un conjunto de datos del campo de la predicción de estructuras de proteínas, en el que se pretendía conseguir un predictor para distinguir un conjunto de estructuras a partir de las ya conocidas, especialmente la detección de contactos residuo-residuo en las proteínas.

El conjunto de entrenamiento utilizado en la competición constaba de dos clases, con alrededor de 32 millones de instancias con 631 atributos ocupando 56,7 Gigabytes de datos. Para validar la utilidad de los métodos de la competición se ha considerado un conjunto de test con unos 2,8 millones de ejemplos que se almacenan aproximadamente en 5 Gigabytes de datos.

El equipo de la UGR que ha ganado la competición ha propuesto una combinación de técnicas de preprocesamiento de datos (sobremuestreo de alta ratio sobre la clase minoritaria y selección de características basada en pesos) y multiclasificadores basados en árboles de decisión utilizando MapReduce, extendiendo las ideas publicadas en la revista ‘Information Sciences’. En segundo lugar quedó la Universidad de Newcastle (Reino Unido), y en tercero la Universidad de Nueva Gales del Sur (Australia).

José Manuel Benítez (izquierda), recogiendo el Premio en Vancouver.

José Manuel Benítez (izquierda), recogiendo el Premio en Vancouver.

Como explica el director del grupo de investigación ‘Soft Computing y Sistemas de Información Inteligentes’ de la UGR, Francisco Herrera, “los desarrollos tecnológicos en torno al ‘big data’ y el análisis inteligente de datos han dado lugar recientemente al término de Ciencia de Datos (Data Science), definido como un área emergente de trabajo relacionada con la preparación, análisis, visualización, gestión y mantenimiento de grandes colecciones de datos para la obtención de conocimiento que genere ventajas de negocio. Debido al impacto que estas temáticas están llegando a alcanzar, ha aparecido un nuevo término profesional: el ‘científico de datos’.

El alto potencial del ‘big data’ ha sido reconocido de inmediato debido a su influencia sobre problemas de diversos campos de conocimiento. “Entender la economía global, obtener una mejor planificación de servicios públicos, desarrollar investigaciones científicas o buscar nuevas oportunidades de negocio son algunas de las grandes aplicaciones relacionadas con estos grandes repositorios de datos”, apunta el profesor Herrera.

Dos artículos importantes

El grupo de investigación SCI2S de la Universidad de Granada ha desarrollado diversas aproximaciones basadas en MapReduce y las tecnologías Hadoop y Spark para abordar problemas de ‘big data’. Estas aproximaciones tratan de lidiar con grandes conjuntos de datos, con datos heterogéneos y con datos textuales como los disponibles en las redes sociales.

Recientemente ha publicado dos trabajos en los que se aborda el problema del desbalanceo entre clases en ‘big data’, un problema recurrente en aplicaciones del mundo real en el que tenemos pocas instancias asociadas a un hecho concreto frente a las muchas instancias en el problema, por ejemplo, los casos de fraude respecto al número total de transacciones.

Así, en un primer trabajo han desarrollado sistemas de clasificación basados en reglas difusas combinados con aproximaciones sensibles al coste utilizando MapReduce. Estos avances han sido publicados en la revista ‘Fuzzy Sets and Systems’, y se caracterizan por proporcionar clasificadores en forma de reglas con etiquetas lingüísticas, de manera que sean interpretables por el usuario y que a su vez son capaces de obtener una alta efectividad en la clasificación.

Por otra parte, en un segundo trabajo los investigadores de la UGR han estudiado la aplicación de multiclasificadores siguiendo el modelo Random Forest junto a algoritmos de preprocesamiento bajo el paradigma MapReduce, habiéndose publicado estos resultados en la revista internacional ‘Information Sciences’. Para abordar el desequilibrio de clases con éxito, se proponen diversas estrategias como las técnicas sensibles al coste y el uso de técnicas de preprocesamiento basadas en el muestreo de clases para tratar de obtener una distribución de instancias equilibrada que permite mejorar el funcionamiento de los algoritmos de aprendizaje.

Además, en el grupo de investigación se ha iniciado una línea de trabajo en el área conocida como ‘Social Big Data’ para desarrollar algoritmos cuyo objetivo sea el procesamiento de información textual, como la obtenida en las redes sociales.

Contacto:

Francisco Herrera
Director del grupo de investigación “Soft Computing y Sistemas de Información Inteligentes”
Dpto. de Ciencias de la Computación e Inteligencia Artificial de la Universidad de Granada.
Tlfno: 958 240 598
Correo electrónico: herrera@decsai.ugr.es


Share

Últimas publicaciones

El proyecto ‘Ciencia sin Etiquetas’ acerca el conocimiento científico a más de 600 mayores y menores granadinos
Granada | 13 de junio de 2024

Un equipo de investigadores e investigadoras del Instituto de Parasitología y Biomedicina López-Neyra (IPBLN) lidera esta iniciativa que ha explicado conceptos científicos y el origen de las enfermedades a colectivos vulnerables de la ciudad. El proyecto ha contado con la colaboración de la Fundación Descubre y el Ayuntamiento de Granada y con la financiación de la Fundación Española para la Ciencia y la Tecnología, perteneciente al Ministerio de Ciencia e Innovación, y el Consejo Superior de Investigaciones Científicas (CSIC).

Sigue leyendo
Las hortalizas de los huertos urbanos andaluces no son peligrosas para la salud
Sevilla | 13 de junio de 2024

A pesar de que algunos de los suelos de estos huertos mostraron contaminación por elementos potencialmente contaminantes, un reciente estudio realizado por la Universidad de Sevilla y el Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), ha concluido que el riesgo potencial para la salud humana es mínimo. Una de las zonas estudiadas que más preocupaba por su toxicidad era el entorno minero de Riotinto, en Huelva.

Sigue leyendo
Alertan de los efectos de la minería y los vertidos tóxicos accidentales en el cinturón pirítico ibérico
Cádiz | 12 de junio de 2024

Un estudio liderado por el Instituto de Ciencias del Mar (ICM-CSIC) ha analizado el papel de la afluencia Atlántica en el transporte y acumulación de sedimentos contaminados por metales pesados ​​desde el golfo de Cádiz hasta el mar de Alborán. La señal de alerta por parte de la comunidad científica llega en un momento de posible reapertura de la mina de Aznalcóllar (Sevilla), 26 años después del devastador vertido tóxico ocurrido en esta explotación.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido