Demuestran por primera vez la posibilidad de controlar el espín electrónico por medios geométricos
Fuente: Universidad de Sevilla
La prestigiosa revista Nature Communications ha publicado en su edición del 26 de septiembre un artículo donde se demuestra por primera vez la manipulación controlada e independiente de fases geométricas en electrónica cuántica de espines, con posibles aplicaciones en el desarrollo de nanocircuitos para el procesamiento de información. El trabajo es fruto de una colaboración entre el profesor Diego Frustaglia, del Departamento de Física Aplicada II de la Universidad de Sevilla, e investigadores de las universidades de Tohoku (Japón) y Regensburg (Alemania).
El espín electrónico (momento magnético intrínseco de una partícula) responde a la presencia de campos magnéticos según la configuración dinámica (magnitud de los campos) y geométrica (dirección de los campos). En su evolución temporal, el espín adquiere una fase cuántica correspondiente en cada caso, dando lugar a fenómenos de interferencia que resultan fundamentales para el desarrollo de nuevas tecnologías cuánticas de la información (por ejemplo, bits cuánticos itinerantes).
“Normalmente, las fases dinámicas y geométricas están acopladas, esto es, no puede modificarse una sin la otra”, explica Frustaglia quien añade que en este trabajo los expertos han demostrado, la “sorprendente” posibilidad de controlar las fases geométricas independientemente de las fases dinámicas gracias a una ingeniosa disposición de campos múltiples. “Es como si en vez de cambiar la trayectoria de las partículas mediante la aplicación de una fuerza, modificáramos directamente las propiedades geométricas del espacio en que se mueven”, ha añadido este investigador de la Universidad de Sevilla.
Esto resulta de interés tanto desde el punto de vista básico como aplicado, ya que las propiedades geométricas son más estables que las dinámicas.
La colaboración constó de tres partes: trabajo experimental (realizado por el grupo japonés), desarrollo teórico (realizado en Sevilla) y simulaciones numéricas por ordenador (realizadas en Alemania). “En 2010, el profesor Nitta (responsable del grupo japonés) compartió conmigo unos resultados experimentales preliminares en busca de una interpretación. Durante los meses siguientes desarrollé una teoría que explicaba los experimentos y hacía nuevas predicciones, frente a lo cual se llevó a cabo una nueva serie de experimentos cuyos resultados respondían perfectamente a la teoría. A la vez, contactamos con el profesor Richter (responsable del grupo alemán) para que realizara unas simulaciones numéricas independientes. El resultado fue excelente.
Estos resultados representan un gran avance en el desarrollo de la ingeniería cuántica de nanosistemas. Sus autores, con más de una década de experiencia en el tema, reciben con esta publicación un amplio reconocimiento de la comunidad científica internacional.
Artículo científico: http://dx.doi.org/10.1038/ncomms3526
* Pueden ver la explicación de la ilustración en el artículo científico.
Últimas publicaciones
Un grupo de investigación de la Universidad de Cádiz ha empleado un sistema de extracción ‘verde’ para identificar la cantidad de este aminoácido esencial, necesario para producir proteínas, así como la hormona melatonina y el neurotransmisor serotonina en el organismo. Tras los ensayos, realizados con hongos comestibles del sur de Andalucía y el norte de Marruecos, los resultados evidencian su alta concentración en este tipo de alimentos y abre nuevas vías de estudio para determinar su potencial terapéutico.
Sigue leyendoUn equipo de investigación de la Universidad de Málaga ha evaluado a casi un centenar de estudiantes de entre 8 y 12 años para entender mejor los desafíos léxicos a los que se enfrentan aquellos con pérdida auditiva. Las expertas sugieren un enfoque basado en relaciones entre determinadas clases de palabras para mejorar su aprendizaje y que puedan estudiar en igualdad de condiciones que sus compañeros oyentes.
Nos encontramos a menos de un día del solsticio de diciembre, que tendrá lugar a las 10:20 de este sábado, hora española. Esta efeméride marca el comienzo de las estación astronómicas de invierno para el hemisferio norte. Dejamos atrás el otoño, con sus tonalidades amarillas, naranjas y marrones, y damos paso al color blanco de los copos de nieve, a las luces de colores, y a las flores de pascua. Son algunos de los protagonistas de estas fiestas, que también tienen su ciencia. Por ello os proponemos descubrir diferentes curiosidades científicas relacionadas con la Navidad. ¿Sabías que el espumillón comenzó a fabricarse de aluminio y plomo y con el paso del tiempo ha variado su composición para hacerse ahora de PVC? ¿Te has preguntado alguna vez por qué las típicas flores de esta época del año son esas y no otras? ¿ O cuánto consumen las luces led del árbol que adornas cada año?
Sigue leyendo