El láser más grande del mundo estruja diamantes con presión planetaria
Fuente: sinc
Hace unos meses investigadores del Lawrence Livermore National Laboratory, en California, alcanzaron un hito en la fusión nuclear al liberar por primera vez más energía que la absorbida por el combustible utilizado. Esto se hizo en la máquina National Ignition Facility (NIF), con la que ahora han conseguido un nuevo avance: ‘estrujar’ un diamante con una presión increíble: 5 terapascales (5 x 1012 Pa).
“De esta forma hemos comprimido este material, el menos compresible de los conocidos, a una densidad sin precedentes de 12 g/cm3 (cuando lo normal en el diamante es 3,5 g/cm3), una cifra mayor que la del plomo en condiciones ambientales (11,34 g/cm3)”, destacan Ray Smith y el resto de los autores en la revista Nature.
“Esta instalación, que alberga el láser más grande del mundo, aparece en la película Stark Trek en la oscuridad, donde hace las veces del núcleo warp de la nave Enterprise”, recuerdan los investigadores británicos Chris Pickard y Richard Need en un artículo paralelo, donde también destacan las posibilidades que abre el experimento con los diamantes.
El enorme nivel de compresión se ha logrado bombardeando el diamante con 176 haces de luz láser mediante una técnica llamada ‘de rampa’ o ramp compression, que permite generar potentes ondas de presión sobre este duro material de carbono. La presión que se consigue, de hasta 50 millones de atmósferas, es aproximadamente 14 veces la del centro de la Tierra y muy similar a la del centro de Saturno.
Según los científicos, los resultados del estudio pueden ayudar a comprender mejor el ambiente extremo y sus efectos sobre la materia en el interior más profundo de gigantes como Saturno, Júpiter o los numerosos exoplanetas que no dejan de descubrirse fuera de nuestro sistema solar.
El equipo también subraya que su enfoque se puede aplicar al análisis del comportamiento de materiales bajo las colosales presiones de las estrellas o en los ensayos de fusión nuclear por confinamiento inercial, el verdadero objetivo de la máquina NIF.
Referencia bibliográfica:
R. F. Smith et al.: “Ramp compression of diamond to five terapascals”. Chris J. Pickard & Richard J. Needs: “Piling on the pressure”. Nature 511, 17 de julio de 2014.
Últimas publicaciones
Investigadores de la Universidad de Huelva han utilizado miles de observaciones ciudadanas para cruzarlas con variables ambientales como la salinidad, la productividad del agua o la dirección de las corrientes. El análisis permitió generar mapas de probabilidad de presencia y detectar patrones que podrían ser útiles para desarrollar sistemas de alerta temprana en la costa andaluza.
La noche del 10 de agosto, numerosas personas fueron testigos de la desintegración de la cuarta etapa del cohete Jielong-3 que lanzó al espacio China el pasado 8 de agosto. Esta bola de fuego artificial fue registrada por los detectores que el Proyecto SMART opera en los observatorios de Calar Alto (Almería), La Hita (Toledo), Sierra Nevada (Granada), Otura (Granada), Huelva y Sevilla.
Sigue leyendoUn equipo de investigación de la Universidad de Huelva ha ampliado la acción de dos medicamentos mediante su administración en nanotubos de carbono. Con esta estrategia probada en laboratorio consiguen que actúen de manera más precisa en el foco de infección y que su efecto dure más tiempo.