Investigadores de la UGR diseñan una IA para predecir la duración de estancias turísticas en la Alpujarra
Un modelo de inteligencia artificial permite predecir cuántas noches se quedarán los vehículos en la Alpujarra Granadina al monitorizar las matrículas de los coches.
Fuente: Universidad de Granada
Un equipo de investigadores del Centro de Investigación en Tecnologías de la Información y la Comunicación (CITIC-UGR) conformado por Daniel Bolaños, María Bermúdez y José Luis Garrido, ha publicado un estudio en el que se emplean modelos de inteligencia artificial para analizar la movilidad en áreas rurales con alta afluencia turística. El estudio, titulado ‘Predicting Overnights in Smart Villages: The Importance of Context Information’ (Predicción de Estancias Nocturnas en Pueblos Inteligentes: La Importancia de la Información Contextual, en español), predice la duración de las estancias turísticas leyendo la matrícula de los vehículos.
Los datos analizados se han obtenido a partir de cámaras de detección de matrículas que monitorizan la movilidad de los coches que acceden al barranco de Poqueira en la Alpujarra. Además, se han usado variables estacionales y datos socioeconómicos para añadir información clave que permita optimizar la gestión turística.

Los datos se han obtenido a partir de cámaras de detección de matrículas que monitorizan la movilidad de los coches que acceden al barranco de Poqueira en la Alpujarra.
La investigación destaca cómo el uso de inteligencia artificial puede mejorar la planificación de servicios locales como estacionamientos, transporte público y la oferta hotelera, contribuyendo al desarrollo sostenible en zonas turísticas rurales. “Nuestro enfoque promueve una gestión más sostenible de los recursos al reducir el uso de datos innecesarios y procesar solo la información más relevante”, explica Daniel Bolaños, primer autor del artículo y uno de los investigadores del proyecto.
El estudio ha analizado datos de movilidad en la comarca de la Alpujarra, específicamente en los municipios de Pampaneira, Capileira y Bubión, utilizando cámaras de reconocimiento de matrículas (LPR) durante un periodo de 17 meses. Esto ha permitido monitorizar los movimientos de vehículos en una zona montañosa rural. Se emplearon datos de visitas anteriores de los vehículos a la zona y, en el caso de que no hubiera información previa (por ser la primera visita del vehículo), se utilizó información contextual, como si visita o no en días festivos, la ruta de acceso a la Alpujarra, el origen del vehículo y otras variables socioeconómicas.
Tres categorías
A partir de ahí, el modelo ha clasificado las estancias de los vehículos en tres categorías: visitas de un día, en las que los vehículos pasan el día en la zona sin pernoctar; visitas cortas, en las que los vehículos permanecen entre una y cinco noches en la zona y, finalmente, visitas prolongadas, que suponen una estancia de más de cinco noches. La clasificación en estos tres intervalos se justifica porque permite una predicción más precisa y segmentada, lo que facilita la toma de decisiones por parte de las autoridades locales.
Por ejemplo, este tipo de segmentación permite ajustar políticas turísticas, como tarifas de estacionamiento o el desarrollo de infraestructuras, dependiendo del tipo de visita. Los vehículos que pasan más noches generan más impacto en la zona, tanto económico como en términos de uso de recursos.
La investigación es el resultado de una colaboración multidisciplinar entre diferentes departamentos y centros: el grupo de investigación MYDASS de la Escuela de Informática y el grupo ISDE de la Facultad de Empresariales de la Universidad de Granada. El proyecto ha sido llevado a cabo gracias a la financiación de la Unión Europea a través de la convocatoria LifeWatch ERIC. También han colaborado los Ayuntamientos de Pampaneira, Bubión y Capileira, y otros organismos e instituciones como la Diputación de Granada, la Dirección General de Tráfico (DGT) y la Consejería de Obras Públicas de la Junta de Andalucía.
Referencia:
Bolaños-Martinez, D., Garrido, J.L. & Bermudez-Edo, M. ‘Predicting overnights in smart villages: The importance of context information’. Int. J. Mach. Learn. & Cyber. (2024).
Últimas publicaciones
Trampas adhesivas amarillas más pequeñas y mejor distribuidas permiten un mejor control de la población de mosca del olivo según un estudio en campo realizado por el Grupo de Entomología Agrícola de la Universidad de Córdoba. Como novedad, este trabajo relaciona además el daño que causa la mosca del olivo según su población dependiendo de la variedad de olivo.
Sigue leyendoInvestigadores de la UGR y la Universidad de Alicante publican el atlas anatómico más completo de estas larvas, claves para la agricultura sostenible y la lucha biológica contra plagas. Este avance no sólo amplía el conocimiento científico sobre las mismas, sino que tiene también aplicaciones prácticas muy valiosas para la agricultura sostenible y la conservación de la biodiversidad.
Sigue leyendoInvestigadores del departamento de Botánica y Fisiología Vegetal de la Universidad de Málaga han realizado un estudio que demuestra un patrón estacional: en verano y otoño se genera una alta densidad de nuevos individuos por multiplicación. El equipo señala que la delimitación de estos intervalos temporales en su comportamiento puede ayudar a las administraciones públicas a controlar de manera más eficaz a esta especie invasora.
Sigue leyendo