VOLVER

Share

INVESTIGADORES DE LA UNIVERSIDAD DE CÓRDOBA DESARROLLAN UN MÉTODO MATEMÁTICO PARA MEDIR LA EFECTIVIDAD AGRÍCOLA


02 de diciembre de 2011

Fuente: Paula Tarradas / Programa de Formación de Monitores en Materia de Divulgación del Conocimiento 

El grupo de investigación de la UCO Aprendizaje y Redes Neuronales (AYRNA), junto con el Instituto de Agricultura Sostenible de Córdoba del (CSIC), ha desarrollado un método de clasificación de patrones mediante el uso de redes neuronales artificiales (RNA). El equipo liderado por el profesor César Hervás-Martínez quiere conseguir extrapolar este sistema matemático a casos prácticos. Para ello usan variables presentes en la vida real, como pueden ser los recursos agrarios, y los clasifican con el fin de evaluar la eficiencia técnica de los campos de cultivo. Este estudio forma parte de un Proyecto de Excelencia para el que ha recibido un incentivo de 210.257 euros por parte de la Consejería de Economía Innovación y Ciencia de la Junta de Andalucía.

 

El profesor César Hervás y su equipo de investigaciónMediante este modelo de clasificación el grupo va a evaluar la eficiencia técnica de las explotaciones agrarias. Se determina una variable presente en el entorno como el consumo de agua y se analiza el uso que se hace de este recurso en el sector agrícola. “Mediante el estudio del consumo de agua en una finca podemos comparar estrategias productivas y determinar si las distintas formas de uso de este recurso pueden establecer cuándo una explotación agrícola es eficaz o no. Este tipo de evaluación puede ser especialmente útil en procesos de decisión relacionados con la gestión de los recurso hídricos andaluces”, explica el profesor Hervás.

A través de estas redes neuronales artificiales – algoritmo de aprendizaje inspirado en el sistema nervioso biológico – se pueden obtener modelos matemáticos de optimización, predicción y clasificación ordinal o nominal. “Los modelos neuronales artificiales son técnicas empíricas de clasificación capaces de modelar la relación existente entre una variable dependiente y una serie de variables independientes” añade.

Aplicación al olivar

También dentro del ámbito agrario, el grupo de trabajo aplica este método, basado en redes neuronales, para clasificar las cubiertas vegetales – espacio comprendido entre las hileras de árboles en los campos de cultivo – en el olivar. Recogen los datos necesarios a través de la observación aérea de la superficie terrestre. “Teniendo en cuenta las variables que proporciona la teledetección se desarrolla un método de clasificación que distingue entre cubiertas vegetales y cada árbol de olivo, proporcionando una información esencial para el seguimiento administrativo de las medidas de condicionalidad de los campos de cultivo y aportando datos esenciales para la concesión de ayudas agrarias», explica César Hervás.

El proyecto de investigación se encuentra en su último año de desarrollo. Según comenta el profesor Hervás, “nuestro equipo va a seguir trabajando con modelos de redes neuronales porque es un método que, en ciertos entornos, presenta serias ventajas en cuanto a su capacidad de predicción y de clasificación y que se están incorporando con éxito en múltiples ramas de la ciencia como la Biomedicina, la Bioinformática o la Ingeniería”.

 

Descargue la foto de la noticia:

 

El profesor César Hervás y su equipo de investigación.

Más información:

Prof. César Hervás Martínez.
Dpto. de Informática y Análisis Numérico.
Universidad de Córdoba.
e-mail: chervas@uco.es
Web del grupo de investigación:http://www.uco.es/ayrna


Share

Últimas publicaciones

La exposición `Paseo Matemático al-Ándalus´ de la Fundación Descubre regresa a Túnez de la mano de la Embajada de España y el Instituto Cervantes
Túnez | 01 de diciembre de 2025

La Académie diplomatique internationale de Tunis ha acogido la inauguración de la exposición ‘Paseo Matemático al-Ándalus’ de la Fundación Descubre.

Sigue leyendo
Desarrollan un sistema inteligente que detecta anomalías cardíacas en los electrocardiogramas para anticipar el diagnóstico
Málaga | 30 de noviembre de 2025

Un equipo de investigación de la Universidad de Málaga diseña una plataforma automática que identifica irregularidades en la actividad eléctrica del corazón compatibles con afecciones cardíacas como arritmias, isquemia o infarto de miocardio. La combinación de la detección automatizada con la revisión de los sanitarios podría mejorar la precisión diagnóstica en los pacientes.

Sigue leyendo
Plantean un nuevo impuesto al carbono para que España cumpla sus objetivos sin frenar el crecimiento económico
Sevilla | 27 de noviembre de 2025

El estudio, realizado por investigadores del departamento de Economía de la Universidad Loyola y de la Universidad Autónoma de Barcelona, identifica el nivel impositivo necesario para alcanzar los objetivos de reducción de emisiones de España para 2030. La investigación analiza los efectos de aplicar un impuesto a las emisiones de carbono en España y concluye que una buena gestión de los ingresos puede reducir la contaminación y favorecer el empleo.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido