Nuevo sistema de verificación para tratamientos de radioterapia
Fuente: Centro Nacional de Aceleradores
El cáncer es actualmente una enfermedad con gran incidencia y un alto índice de mortalidad. Este es el motivo por el que hoy en día se aúnan una gran cantidad de esfuerzos con el fin de desarrollar técnicas que ayuden a aumentar los índices de supervivencia y a mejorar la calidad de vida de los enfermos.
Cuando se plantean tratamientos complejos de radioterapia con fotones, tales como la Radioterapia de Intensidad Modulada (IMRT), en ocasiones es importante, antes de tratar a un paciente, realizar una verificación de la distribución de la dosis que va a recibir.
En este contexto, nuestro trabajo se inició con el desarrollo de un primer prototipo de sistema de verificación, basado en un detector comercial de silicio, dentro de 2 proyectos: RADIA (cuya investigadora principal era la profesora de la Universidad de Sevilla M. Isabel Gallardo) y el proyecto europeo DITANET, del cual era investigador principal local el profesor Joaquín Gómez Camacho, director del Centro Nacional de Aceleradores.
Actualmente se está trabajando en un nuevo sistema, basado en un detector de silicio desarrollado específicamente para este fin, dentro de una colaboración entre la Universidad de Sevilla, el Centro Nacional de Aceleradores, ATI Sistemas, S. L. y Micron Semiconductor Ltd. (responsable de la construcción del detector).
La contribución del CNA se enmarca en el proyecto europeo oPAC, en el sub-proyecto, “Diseño de un sistema de detección para verificar mapas de dosis 2D para tratamientos de radioterapia de intensidad modulada”, en el que participan los investigadores M.C Battaglia, J.M Espino y M.A.G Alvarez.
El objetivo final del nuevo sistema es obtener mapas de dosis en dos dimensiones, mejorando la resolución espacial con respecto al primer prototipo y realizando la verificación del tratamiento de forma más rápida. Ya se han realizado las primeras medidas para probar y caracterizar el sistema en el Hospital Universitario Virgen Macarena, utilizando un acelerador lineal clínico para irradiar el detector.
Referencia bibliográfica:
“J. M. Espino, M. I. Gallardo, M. A. G. Alvarez, R. Arráns, A.Bocci, M. A. Cortés‐Giraldo, Z. Abou‐Haïdar, A. Pérez Vega‐Leal, M. C. Ovejero, J. M. Quesada, F. J. Pérez Nieto, R. Núñez Martín, M. C. Battaglia”
“Viability study of a detection system for complex radiation therapy treatment verification. Achievements of the Radia collaboration and ongoing developments”
“oPAC Newsletter 5 (2013) 11”
http://indico.ific.uv.es/indico/getFile.py/access?contribId=30&resId=0&materialId=slides&confId=744
Últimas publicaciones
Los investigadores del Laboratorio de Neurociencia Celular y Plasticidad de la Universidad Pablo de Olavide, Antonio Rodríguez-Moreno y Rafael Falcón-Moya, han participado en un estudio internacional sobre las dianas cerebrales de distintos endocannabinoides, que actúan específicamente sobre células diferentes (neuronas o astrocitos) y que ha sido publicado en la revista Nature Neuroscience.
Sigue leyendoInvestigadores de la Universidad de Granada han desarrollado una metodología pionera para fabricar materiales funcionales avanzados a una velocidad sin precedentes. Esta estrategia supera barreras actuales en el ensamblado de nanomateriales: la lentitud y los defectos que surgen cuando las partículas se agrupan de forma espontánea. El nuevo método no requiere moldes físicos ni recipientes especiales, lo que supone una ventaja para la fabricación de materiales avanzados y reconfigurables para aplicaciones industriales.
Sigue leyendoUn equipo de investigación de la Universidad de Almería ha desarrollado una fórmula para preservar cepas microalgales en un medio de cultivo más viscoso que aumenta el tamaño de las colonias de estos microorganismos. Con la nueva estrategia, las poblaciones pasan de conservarse una semana a dos meses, manteniendo sus características genéticas y funcionales intactas para los experimentos en laboratorio.

