VOLVER

Share

Predicen terremotos con cerca de un 80% de fiabilidad

Fuente: Universidad de Sevilla


16 de mayo de 2014

Miembros del grupo de grupo de investigación Estructuras y Geotecnia de la Universidad de Sevilla, junto a investigadores del grupo de investigación Minería de datos y sistemas inteligentes de la Universidad Pablo de Olavide y del TGT-NT2 Labs de Chile, han diseñado un método científico de predicción de terremotos con una fiabilidad de entre un 70% y un 80%. Este diseño, basado en técnicas de minería de datos, permite predecir un movimiento sísmico con una semana de antelación, en el caso de la Península Ibérica, y cinco días en Chile.

“Nuestro sistema de predicción se basa en una red neuronal artificial en la cual una serie de datos de entrada, interconectados a través de ecuaciones, dan un resultado”, explica el profesor de la Universidad de Sevilla Antonio Morales, propulsor de esta técnica junto al profesor de la UPO Francisco Martínez y el científico chileno Jorge Reyes.

En la Península Ibérica han estudiado el Mar de Alborán y la zona oeste de la falla Azores-Gibraltar, mientras que en Chile la investigación se ha extendido a cuatro de las regiones con mayor actividad sísmica el país. La sismicidad de la Península Ibérica es moderada, sin embargo, Chile es el país con mayor actividad sísmica del mundo. Esto demuestra que esta técnica es válida zonas con propiedades sísmicas y tectónicas diferentes.

“Lo que destaca de nuestro sistema es que hemos sistematizado un problema científico. Además, la tasa de acierto es muy alta para este tipo de problemas. La ventana temporal varía entre cinco y siete días. La incertidumbre espacial queda limitada a la amplitud de cada zona”, afirma el Dr. Morales.

Actualmente, la metodología se está depurando con datos de Japón. Un país donde el riesgo sísmico es muy elevado debido a su sismicidad, densidad de población y riqueza económica. Además, están desarrollando una página web en la que se podrán consultar las predicciones para la Península Ibérica en tiempo real.

Artículos científicos:

Pattern recognition to forecast seismic time series

Neural networks to predict earthquakes in Chile

Earthquake prediction in seismogenic areas of the Iberian Peninsula based on

computational intelligence

Determining the best set of seismicity indicators to predict earthquakes. Two case studies: Chile and the Iberian Peninsula


Share

Últimas publicaciones

Andalucía celebra el 11F con Cafés con Ciencia y actividades en todas las provincias para visibilizar a las mujeres investigadoras
Andalucía | 11 de febrero de 2026

La Fundación Descubre, promovida por la Consejería de Universidad, Investigación e Innovación, organiza y financia 54 encuentros con científicas en Sevilla, Granada, Cádiz y Almería con motivo del Día Internacional de la Mujer y la Niña en la Ciencia. La Comunidad autónoma celebra el 11 de Febrero con el lema ‘Sesgos de género en Inteligencia Artificial’ y más de 233 actividades  organizadas por universidades y centros de investigación para visibilizar el talento de las mujeres en la ciencia, destacar referentes femeninos en ciencia e inspirar a las niñas a seguir carreras STEM.

Sigue leyendo
Los parques y reservas naturales amortiguan los efectos de la aridez y aumentan la resistencia frente al cambio climático en las tierras secas
Sevilla | 09 de febrero de 2026

Un estudio liderado desde el IRNAS-CSIC ha revelado que las áreas de máxima protección medioambiental (categorías I y II de la UICN) actúan como escudo frente a los efectos de la aridez y la sequedad en las tierras secas, que constituyen más del 41% del planeta. Los investigadores alerta de que tan solo un 7% de las tierras secas están actualmente bajo estas categorías.

Sigue leyendo
Diseñan una técnica para identificar el origen de la miel a partir del aroma
Almería | 08 de febrero de 2026

Un equipo de investigación de la Universidad de Almería ha desarrollado un método para determinar la procedencia floral del producto mediante el análisis de las sustancias aromáticas y otros indicadores que completan su perfil químico. La técnica abre nuevas posibilidades para mejorar la trazabilidad, el control de calidad y la detección de fraudes alimentarios en el sector apícola.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido