VOLVER

Share

Predicen terremotos con cerca de un 80% de fiabilidad

Fuente: Universidad de Sevilla


16 de mayo de 2014

Miembros del grupo de grupo de investigación Estructuras y Geotecnia de la Universidad de Sevilla, junto a investigadores del grupo de investigación Minería de datos y sistemas inteligentes de la Universidad Pablo de Olavide y del TGT-NT2 Labs de Chile, han diseñado un método científico de predicción de terremotos con una fiabilidad de entre un 70% y un 80%. Este diseño, basado en técnicas de minería de datos, permite predecir un movimiento sísmico con una semana de antelación, en el caso de la Península Ibérica, y cinco días en Chile.

“Nuestro sistema de predicción se basa en una red neuronal artificial en la cual una serie de datos de entrada, interconectados a través de ecuaciones, dan un resultado”, explica el profesor de la Universidad de Sevilla Antonio Morales, propulsor de esta técnica junto al profesor de la UPO Francisco Martínez y el científico chileno Jorge Reyes.

En la Península Ibérica han estudiado el Mar de Alborán y la zona oeste de la falla Azores-Gibraltar, mientras que en Chile la investigación se ha extendido a cuatro de las regiones con mayor actividad sísmica el país. La sismicidad de la Península Ibérica es moderada, sin embargo, Chile es el país con mayor actividad sísmica del mundo. Esto demuestra que esta técnica es válida zonas con propiedades sísmicas y tectónicas diferentes.

“Lo que destaca de nuestro sistema es que hemos sistematizado un problema científico. Además, la tasa de acierto es muy alta para este tipo de problemas. La ventana temporal varía entre cinco y siete días. La incertidumbre espacial queda limitada a la amplitud de cada zona”, afirma el Dr. Morales.

Actualmente, la metodología se está depurando con datos de Japón. Un país donde el riesgo sísmico es muy elevado debido a su sismicidad, densidad de población y riqueza económica. Además, están desarrollando una página web en la que se podrán consultar las predicciones para la Península Ibérica en tiempo real.

Artículos científicos:

Pattern recognition to forecast seismic time series

Neural networks to predict earthquakes in Chile

Earthquake prediction in seismogenic areas of the Iberian Peninsula based on

computational intelligence

Determining the best set of seismicity indicators to predict earthquakes. Two case studies: Chile and the Iberian Peninsula


Share

Últimas publicaciones

El primer atlas celular de la inflamación utiliza IA para acelerar el diagnóstico de enfermedades inflamatorias
España | 12 de enero de 2026

Investigadores del Centro Nacional de Análisis Genómico han lanzado esta herramienta biomédica, una base de datos exhaustiva en la que han analizado más de 6,5 millones de células de la sangre procedentes de 1.000 personas, tanto individuos sanos como pacientes de 19 enfermedades diferentes.

Sigue leyendo
Identifican compuestos con actividad antitumoral en una nueva variedad de berenjena
Granada | 12 de enero de 2026

Un estudio desarrollado por la Universidad de Granada y el ibs.GRANADA, con la colaboración de la Fundación Cellbitec, demuestra la eficaciade los extractos de semilla de la berenjena S0506 frente al cáncer de colon, tanto en laboratorio como en modelos animales.

Sigue leyendo
Obtienen cereales resistentes a la sequía y con bajo contenido en gluten
Córdoba | 10 de enero de 2026

Un equipo de investigación del Instituto de Agricultura Sostenible del CSIC de Córdoba ha confirmado la mejora en la respuesta al estrés hídrico de un tipo de trigo con bajo contenido en este alérgeno. Los resultados obtenidos mediante técnicas genéticas abren nuevas vías para la elaboración de productos sin este compuesto a partir del mismo cultivo.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido