VOLVER

Share

Predicen terremotos con cerca de un 80% de fiabilidad

Fuente: Universidad de Sevilla


16 de mayo de 2014

Miembros del grupo de grupo de investigación Estructuras y Geotecnia de la Universidad de Sevilla, junto a investigadores del grupo de investigación Minería de datos y sistemas inteligentes de la Universidad Pablo de Olavide y del TGT-NT2 Labs de Chile, han diseñado un método científico de predicción de terremotos con una fiabilidad de entre un 70% y un 80%. Este diseño, basado en técnicas de minería de datos, permite predecir un movimiento sísmico con una semana de antelación, en el caso de la Península Ibérica, y cinco días en Chile.

“Nuestro sistema de predicción se basa en una red neuronal artificial en la cual una serie de datos de entrada, interconectados a través de ecuaciones, dan un resultado”, explica el profesor de la Universidad de Sevilla Antonio Morales, propulsor de esta técnica junto al profesor de la UPO Francisco Martínez y el científico chileno Jorge Reyes.

En la Península Ibérica han estudiado el Mar de Alborán y la zona oeste de la falla Azores-Gibraltar, mientras que en Chile la investigación se ha extendido a cuatro de las regiones con mayor actividad sísmica el país. La sismicidad de la Península Ibérica es moderada, sin embargo, Chile es el país con mayor actividad sísmica del mundo. Esto demuestra que esta técnica es válida zonas con propiedades sísmicas y tectónicas diferentes.

“Lo que destaca de nuestro sistema es que hemos sistematizado un problema científico. Además, la tasa de acierto es muy alta para este tipo de problemas. La ventana temporal varía entre cinco y siete días. La incertidumbre espacial queda limitada a la amplitud de cada zona”, afirma el Dr. Morales.

Actualmente, la metodología se está depurando con datos de Japón. Un país donde el riesgo sísmico es muy elevado debido a su sismicidad, densidad de población y riqueza económica. Además, están desarrollando una página web en la que se podrán consultar las predicciones para la Península Ibérica en tiempo real.

Artículos científicos:

Pattern recognition to forecast seismic time series

Neural networks to predict earthquakes in Chile

Earthquake prediction in seismogenic areas of the Iberian Peninsula based on

computational intelligence

Determining the best set of seismicity indicators to predict earthquakes. Two case studies: Chile and the Iberian Peninsula


Share

Últimas publicaciones

Un equipo de la Escuela de Telecomunicación de la UMA desarrolla la próxima generación de robots sociales de asistencia
Málaga | 22 de enero de 2025

Los científicos han probado cómo un robot instalado en la residencia 'Vitalia Teatinos' es capaz de adecuar su comportamiento a cada persona y contexto, consiguiendo que éste ande en la sala común de la residencia más de 40 kilómetros con tareas múltiples como recoger las opciones de menú semanal o participar en sesiones de terapia musical. La investigación se ha desarrollado en el marco del proyecto CAMPERO.

Sigue leyendo
Reconstruyen en imágenes 3D el puente de hierro más largo de España situado en Granada
Jaén | 21 de enero de 2025

El trabajo del Puente del Hacho, situado en la provincia de Granada y atribuido a la escuela de Eiffel, ha sido realizado por los grupos de investigación ‘Tecnologías Avanzadas en Ingeniería Civil: Construcción y Transporte Terrestre’ e ‘Informática Gráfica y Geomática’ de la Universidad de Jaén. Ha contado además con la participación de alumnado de 4º Curso del Grado de Ingeniería Civil de la Escuela Politécnica Superior de Linares.

Sigue leyendo
Investigadores de la UCO mejoran la visión artificial de máquinas en condiciones de poca iluminación
Córdoba | 21 de enero de 2025

Un novedoso modelo desarrollado por la Universidad de Córdoba usa redes neuronales para optimizar la decodificación de los marcadores que usan las máquinas para detectar y conocer la ubicación de los objetos. Tanto los datos generados de manera artificial para entrenar el modelo como los de situaciones de iluminación desfavorable en el mundo real están disponibles en abierto, así el sistema podría aplicarse en la actualidad.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido