VOLVER

Share

Predicen terremotos con cerca de un 80% de fiabilidad

Fuente: Universidad de Sevilla


16 de mayo de 2014

Miembros del grupo de grupo de investigación Estructuras y Geotecnia de la Universidad de Sevilla, junto a investigadores del grupo de investigación Minería de datos y sistemas inteligentes de la Universidad Pablo de Olavide y del TGT-NT2 Labs de Chile, han diseñado un método científico de predicción de terremotos con una fiabilidad de entre un 70% y un 80%. Este diseño, basado en técnicas de minería de datos, permite predecir un movimiento sísmico con una semana de antelación, en el caso de la Península Ibérica, y cinco días en Chile.

“Nuestro sistema de predicción se basa en una red neuronal artificial en la cual una serie de datos de entrada, interconectados a través de ecuaciones, dan un resultado”, explica el profesor de la Universidad de Sevilla Antonio Morales, propulsor de esta técnica junto al profesor de la UPO Francisco Martínez y el científico chileno Jorge Reyes.

En la Península Ibérica han estudiado el Mar de Alborán y la zona oeste de la falla Azores-Gibraltar, mientras que en Chile la investigación se ha extendido a cuatro de las regiones con mayor actividad sísmica el país. La sismicidad de la Península Ibérica es moderada, sin embargo, Chile es el país con mayor actividad sísmica del mundo. Esto demuestra que esta técnica es válida zonas con propiedades sísmicas y tectónicas diferentes.

“Lo que destaca de nuestro sistema es que hemos sistematizado un problema científico. Además, la tasa de acierto es muy alta para este tipo de problemas. La ventana temporal varía entre cinco y siete días. La incertidumbre espacial queda limitada a la amplitud de cada zona”, afirma el Dr. Morales.

Actualmente, la metodología se está depurando con datos de Japón. Un país donde el riesgo sísmico es muy elevado debido a su sismicidad, densidad de población y riqueza económica. Además, están desarrollando una página web en la que se podrán consultar las predicciones para la Península Ibérica en tiempo real.

Artículos científicos:

Pattern recognition to forecast seismic time series

Neural networks to predict earthquakes in Chile

Earthquake prediction in seismogenic areas of the Iberian Peninsula based on

computational intelligence

Determining the best set of seismicity indicators to predict earthquakes. Two case studies: Chile and the Iberian Peninsula


Share

Últimas publicaciones

Analizan la relación de bacterias con residuos plásticos agrícolas para combatir su impacto en el campo
Córdoba | 05 de mayo de 2025

Científicos del Instituto de Agricultura Sostenible de Córdoba han diseñado una metodología para analizar por separado los microorganismos que habitan sobre los fragmentos de acolchados plásticos que cubren el suelo en la agricultura intensiva y los que viven en las partículas de tierra que se quedan adheridas. El trabajo podría ayudar a identificar bacterias capaces de degradar este material y contribuir así a la búsqueda de soluciones biológicas para combatir su acumulación en el campo.

Sigue leyendo
Diseñan un sistema inteligente de videovigilancia en tiempo real para aeropuertos
Málaga | 01 de mayo de 2025

Investigadores de la Universidad de Málaga han desarrollado un algoritmo de Inteligencia Artificial (IA) que realiza un agrupamiento no supervisado de objetos similares evitando el etiquetado manual. Este modelo es capaz de detectar una gran diversidad de elementos en la zona de pistas de un aeródromo, desde personas hasta aviones. Otra de las novedades es su optimización para ahorrar tiempo de cálculo y energía en las tareas de identificación, de forma que permite su uso en dispositivos de bajo consumo.

Sigue leyendo
Un nuevo estudio relaciona la exposición a bisfenoles presentes en alimentos con el sobrepeso en niñas
Granada | 30 de abril de 2025

El estudio, liderado por el Instituto de Investigación Biosanitaria de Granada con la participación de la Universidad de Granada, reveló que las niñas con mayor exposición al bisfenol A presentaban un riesgo casi tres veces mayor de desarrollar sobrepeso u obesidad. El hallazgo destaca la necesidad de seguir investigando sobre la relación entre contaminantes ambientales y enfermedades metabólicas para mejorar el bienestar de la población infantil.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido