Simulan las condiciones bajo tierra para explicar los terremotos en el noroeste de la península ibérica
La aproximación de las placas tectónicas provoca terremotos como los de este año en Granada, pero en el otro extremo de la Península son las fracturas y fluidos de la corteza terrestre los que generan movimientos sísmicos, como los registrados en Lugo y Zamora. Un equipo de geólogos lo ha comprobado simulando las condiciones bajo tierra con una ‘caja’ de silicona, fina arena y café molido.
Fuente: Agencia SINC
Los terremotos que han ocurrido recientemente en el sur de España, concretamente en la provincia de Granada y el Golfo de Cádiz, y en el este de Japón tienen su origen en el choque de las placas tectónicas, de Eurasia y África en el primer caso, y de Filipinas y Pacífico en el segundo.
Sin embargo, en el noroeste de la península ibérica, que está alejado del borde de las placas, de vez en cuando también se producen movimientos sísmicos, que han llegado a superar la magnitud 5 en localidades como Puebla de Sanabria (Zamora) en 1961 y Lugo en 1997, con daños y alarma entre la población.
Detrás de estos terremotos están las fracturas que se formaron y reactivaron en la corteza terrestre durante la orogenia Alpina (la misma que levantó las cordilleras Pirenaica, Cantábrica y Béticas), pero los mecanismos exactos que los desencadenan no están nada claros.
Para resolver el problema, geólogos de las universidades de León, Rey Juan Carlos y Complutense de Madrid han ideado un original modelo que simula lo que ha ocurrido bajo ese territorio con la ayuda de una ‘caja’ en la que depositan tres elementos: silicona para representar la corteza inferior y media (20 km=2 cm), arena blanca coloreada por capas como corteza superior (15 km= 1,5 cm) y partículas de café espolvoreadas por encima para seguir sus movimientos. Una de las paredes de esta sandbox es móvil.
“A medida que en la caja generamos una deformación como la que ocurrió durante la orogenia alpina, registramos todo lo que sucede mediante un escáner láser, y así obtenemos un modelo digital para analizar la topografía y los cambios que se producen en el relieve”, explica uno los autores, Javier Fernández Lozano, de la Universidad de León.
El equipo, que publica su estudio en la revista Tectonics, utiliza un algoritmo matemático para medir los desplazamientos que generan las fracturas sobre la superficie del modelo. De esta forma se puede observar dónde se concentran las deformaciones y, por tanto, dónde es más probable que se produzcan terremotos.
Según el estudio, su origen está en la presencia de fluidos que circulan a grandes profundidades y con elevados gradientes térmicos, lo que facilita la rotura de las fracturas en la corteza e incrementa así la actividad sísmica en determinadas zonas del noroeste peninsular.
“Este fenómeno explicaría las importantes variaciones de sismicidad observadas en el extremo occidental de la Cordillera Cantábrica y los Montes Galaico-Leoneses, en la llamada zona de transición frágil-dúctil (donde las rocas de la corteza terrestre pasan de ser más duras y frágiles a más maleables al elevarse la temperatura con la profundidad)”, detalla Fernández Lozano, “y en esa zona el aumento de la presión de los poros facilita la apertura de las fracturas y la circulación de los fluidos calientes, reduciendo la resistencia de la corteza y la profundidad a la que se producen los terremotos”.
Yacimientos auríferos
Además, el geólogo destaca que este estudio tiene implicaciones importantes sobre la formación de los yacimientos auríferos en el noroeste de España: “Las fracturas actúan como válvulas de escape de los fluidos calientes, y cuando su presión sobrepasa un determinado umbral, la roca se rompe y circulan hacia zonas someras donde precipitan elementos minerales de gran interés, como el oro, el estaño y el wolframio”.
“Por tanto –concluye–, con los nuevos terremotos se abre la posibilidad de que un nuevo yacimiento se pueda estar gestando bajo esas zonas de Castilla y León y Galicia, es decir, yacimientos primarios (donde el mineral se forma en las fracturas de la roca madre) tan importantes como los que luego, por transporte y sedimentación, han dado lugar a los secundarios de Las Médulas (antiguas minas de oro romanas) podrían estar hoy en formación en todo el noroeste de la Península”.
Referencia:
J. Fernández‐Lozano, F. Martín‐González, G. De Vicente. “New insights into the lateral-strength variations and depth to the Brittle-Ductile Transition zone in NW Iberia”. Tectonics, 2021
Últimas publicaciones
Un equipo de investigación de la Universidad de Málaga ha evaluado a casi un centenar de estudiantes de entre 8 y 12 años para entender mejor los desafíos léxicos a los que se enfrentan aquellos con pérdida auditiva. Las expertas sugieren un enfoque basado en relaciones entre determinadas clases de palabras para mejorar su aprendizaje y que puedan estudiar en igualdad de condiciones que sus compañeros oyentes.
Nos encontramos a menos de un día del solsticio de diciembre, que tendrá lugar a las 10:20 de este sábado, hora española. Esta efeméride marca el comienzo de las estación astronómicas de invierno para el hemisferio norte. Dejamos atrás el otoño, con sus tonalidades amarillas, naranjas y marrones, y damos paso al color blanco de los copos de nieve, a las luces de colores, y a las flores de pascua. Son algunos de los protagonistas de estas fiestas, que también tienen su ciencia. Por ello os proponemos descubrir diferentes curiosidades científicas relacionadas con la Navidad. ¿Sabías que el espumillón comenzó a fabricarse de aluminio y plomo y con el paso del tiempo ha variado su composición para hacerse ahora de PVC? ¿Te has preguntado alguna vez por qué las típicas flores de esta época del año son esas y no otras? ¿ O cuánto consumen las luces led del árbol que adornas cada año?
Sigue leyendoEl consejero de Universidad, Investigación e Innovación, José Carlos Gómez Villamandos, ha presidido el Patronato celebrado en Sevilla. El Plan prevé el fomento además de la divulgación en el ámbito de la emergencia, la seguridad y la defensa, al tiempo que comenzarán los trabajos para la divulgación del trío de eclipses solares previstos en la Península para 2026, 2027 y 2028. La Fundación ha celebrado previamente el acto de reconocimiento de las personas y entidades Colaboradoras Extraordinarias de Descubre.