VOLVER

Share

Aplican inteligencia artificial para optimizar el análisis de sustancias aromáticas y autentificar alimentos como el jamón

Investigadores del Instituto de Bioingeniería de Cataluña y la Universidad de Córdoba han optimizado una técnica de análisis molecular de sustancias aromáticas, logrando diferenciar en muestras de jamón ibérico si el cerdo había sido alimentado con bellota o pienso. El nuevo enfoque, que utiliza inteligencia artificial para analizar los datos, se podrá aplicar para autentificar alimentos y luchar contra el fraude.

Fuente: Agencia SINC


Córdoba |
09 de noviembre de 2021

Los análisis de aromas que se realizan en la industria alimentaria se suelen hacer a través de paneles humanos, con expertos entrenados en la identificación de determinadas características aromáticas. Sin embargo, es una metodología cara y muy subjetiva, lo que dificulta la reproducibilidad y fiabilidad de los resultados.

Una alternativa es la utilización de técnicas químicas, como la cromatografía de gases-espectrometría de movilidad iónica (GC-IMS, por sus siglas en inglés), una herramienta rápida y fiable para identificar aromas y detectar fraudes, como ocurren a veces con el jamón ibérico, el aceite de oliva, la miel o los vinos. El problema es que analizar e interpretar bien sus datos es una tarea muy compleja.

Pero ahora, investigadores del Instituto de Bioingeniería de Cataluña  (IBEC) y la Universidad de Córdoba (UCO) han desarrollado un nuevo procedimiento para optimizar el análisis de esos datos sobre aromas en alimentos y lo han validado logrando predecir el régimen alimenticio de cerdos ibéricos. Los detalles los presentan en la revista Sensors. 

“Aplicando nuestra nueva manera de abordar el tratamiento de los datos obtenidos de los análisis hechos con GC-IMS, hemos identificado con éxito muestras de jamón que provienen de cerdos 100 % ibéricos y saber si los cerdos habían sido alimentados con bellotas o con pienso”, destaca Lourdes Arce de la UCO.

Otro de los autores, Santiago Marco, investigador del IBEC y profesor de la Universidad de Barcelona, añade: “Hemos desarrollado nuevos procedimientos que sistematizan, facilitan y optimizan la interpretación de resultados de muestras analizadas por GC-IMS, sin perder la precisión y ventajas de la técnica”.

Nuevo flujo de trabajo con inteligencia artificial

En concreto, los investigadores proponen un flujo de trabajo completo, que va desde el análisis de las muestras (muestreo y protocolo GC-IMS) hasta el preprocesado e interpretación de los datos usando la inteligencia artificial, mejorando tanto la calidad de la información como la detección final de los compuestos volátiles.

Cata en un almacén de jamones ibéricos. / Grupo AGR-287-UCO

Según sus promotores, este nuevo procedimiento abre la posibilidad de construir analizadores a medida para verificar la calidad y autenticidad de productos alimenticios de alto valor, como el jamón ibérico, y evitar posibles fraudes.

 Referencia bibliográfica:  

Rafael Freire et al. “Full Workflows for the Analysis of Gas Chromatography—Ion Mobility Spectrometry in Foodomics: Application to the Analysis of Iberian Ham Aroma”. Sensors, 2021.


Share

Últimas publicaciones

Desarrollan un bioplástico transparente a partir de residuos de la poda del olivo
Jaén | 17 de mayo de 2024

Un equipo de investigación de la Universidad de Jaén y la Fundación Andaltec ha logrado un nuevo material desde los desechos del olivar con buenas cualidades para el envasado de alimentos. Los resultados ofrecen una mayor rentabilidad a este subproducto que otros usos actuales y potencian la economía circular de la zona.

Sigue leyendo
La exposición ‘Paseo Matemático Al-Ándalus’ de Fundación Descubre llega a Chipiona
Cádiz, Chipiona | 17 de mayo de 2024

La muestra podrá visitarse hasta el 14 de junio en la sala de exposiciones del Castillo.

Sigue leyendo
Diseñan una nueva herramienta para avanzar hacia un uso sostenible del agua
Granada | 17 de mayo de 2024

Investigadores del CSIC lideran el desarrollo de un ‘software’ para evaluar el rendimiento de los aditivos que buscan eliminar las incrustaciones de minerales en los sistemas de tratamiento de agua. La clasificación del impacto generado por estos agentes, que provocan estragos en la gestión del agua, permitirá desarrollar soluciones más sostenibles en diversas industrias.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido