VOLVER

Share

CIENTÍFICOS DE LA HISPALENSE INVESTIGAN CÓMO SE MANTIENEN LOS TERMINALES NERVIOSOS


12 de julio de 2011

Fuente: Santi Folch / Programa para la Formación de Monitores en Materia de Divulgación del Conocimiento.

 

¿Se desgastan los terminales neuronales con el uso? A esta pregunta pretende dar respuesta el equipo de investigadores del Instituto de Biomedicina de Sevilla, analizando los mecanismos moleculares que influyen en la neurodegeneración. De esta forma, averiguar si los terminales sujetos a una alta actividad son más vulnerables que los demás, o si disponen de una maquinaria que les proteja, son incógnitas que el grupo pretende desvelar. Rafael Fernández Chacón, responsable del proyecto, plantea la cuestión: «Un bólido de Fórmula 1 necesita que los mecánicos recambien las ruedas desgastadas tras varias vueltas al circuito. ¿Existen ‘mecánicos moleculares’ que restablecen la función de los terminales nerviosos perturbados por la actividad?”.

Grupo de investigadores dirigido por Rafael Fernández ChacónTal y como indica el investigador, las sinapsis se definen como los puntos de contacto donde se produce la comunicación entre las neuronas. Hasta ellas llegan, por un lado, unas prolongaciones de estas células denominadas dendritas, que “se ramifican a la manera de un árbol” y constituyen la parte “receptora” de la conexión. Por el otro lado estarían las terminaciones del axón, otra prolongación de la neurona que conduce el impulso nervioso desde el cuerpo celular (soma), siendo la parte “emisora” del contacto.

En la comunicación de tipo químico (las sinapsis también pueden ser eléctricas), estas terminaciones emisoras producen unas vesículas cargadas de unas proteínas denominadas neurotransmisores, que transmiten información de una neurona a otra. “Al microscopio electrónico son como bolsitas de membrana que tienen dentro el neurotransmisor, y para que sea liberado la bolsita se fusiona con la membrana del propio terminal nervioso”, explica Fernández Chacón.

El fenómeno puede ocurrir miles de veces diariamente en terminales que se encuentran muy alejados del cuerpo de la neurona, “incluso metros”, indican los investigadores. Algunas células nerviosas pueden recibir hasta medio millón de impulsos nerviosos al día. Este alto nivel de actividad fue el motor inicial de la investigación. “Probablemente los terminales nerviosos dispongan de una maquinaria molecular que les permita mantener la función sináptica de forma prolongada en el tiempo, y además con autonomía del soma neuronal”, se planteó el grupo de científicos.

El estudio pretende demostrar la relación entre una proteína de las vesículas sinápticas denominada Cysteine String Protein-alfa (CSP-alfa), probablemente implicada en la recuperación y plegamiento de otras proteínas, con esta función de “mantenimiento” estructural. “Curiosamente, ratones modificados genéticamente que carecen de la CSP presentan una degeneración temprana de sus terminales nerviosos”, indica Fernández Chacón, exponiendo que “los animales nacen sanos, pero en menos de un mes experimentan un gran deterioro neuronal”.

Los expertos están analizando el mecanismo de este desgaste, realizando experiencias como el bloqueo de la actividad neuronal en cultivos neuronales procedentes de estos ratones sin proteína CSP de cara a comprobar su evolución. “Carecen de la proteína protectora, pero… ¿qué ocurrirá si usan menos sus conexiones nerviosas? O también, ¿hasta qué grado de actividad o cuánto tiempo puede proteger la CSP?”, se plantea Fernández Chacón.

De esta forma, el estudio se orienta ahora en profundizar en el mecanismo molecular de todos estos procesos, que apuntan a que “el deterioro se inicia en la sinapsis, afectando después hacia atrás al resto de la neurona”. Tal y como indica el equipo, “por eso trabajamos en un modelo para entender la neurodegeneración. Hemos inhibido la proteína pero… ¿Cómo se produce exactamente la degeneración, por qué? Visto al microscopio electrónico es como una planta que se seca. Hemos de identificar y observar las moléculas claves implicadas y averiguar qué hacen. El conocimiento de esos mecanismos será relevante para entender la neurodegeneración en enfermedades humanas”.

Proteínas que ayudan a otras

Recientemente, la generación y caracterización de una línea de ratones carentes de CSP ha revelado que esta proteína no es necesaria para el funcionamiento normal de la sinapsis, pero es imprescindible para el mantenimiento de la integridad funcional y estructural de los terminales nerviosos. De esta forma, el esclarecimiento del funcionamiento molecular de la proteína CSP resulta de gran trascendencia, y es uno de los objetivos del equipo encabezado por el doctor Fernández Chacón.

Neuoronas vistas por el microscopio electrónicoLa proteína CSP es un co-chaperón. Es decir, una molécula implicada en el plegamiento de otras proteínas, ayudando en el proceso. Las proteínas chaperonas están presentes en todas las células, aunque no forman parte de la estructura primaria de las proteínas funcionales. Sólo se unen a ellas para ayudar en su plegamiento, ensamblaje y transporte celular a otra parte de la célula, donde realizarán su función. La correcta conformación tridimensional –plegamiento- de las proteínas es fundamental para su funcionamiento, y para que se logre pueden actuar a la vez varias chaperonas que trabajan coordinadas. La CSP sería una de ellas, asistiendo a las demás en el proceso. Una función que se ha demostrado vital para el mantenimiento estructural de la conexión sináptica y, a la larga, de la propia neurona.

Descargue las imágenes de la noticia:

Grupo investigador dirigido por Rafael Fernández Chacón
Neuronas vistas por el microscopio electrónico

Más información:

Rafael Fernández Chacón
Teléfono: 954 55 61 03 (Universidad de Sevilla)

955 30 24 47 (IBIS)
Email: rfchacon@us.es


Share

Últimas publicaciones

Un estudio señala que el alga asiática responde a ‘ventanas temporales’ en su carácter invasivo
Málaga | 24 de marzo de 2025

Investigadores del departamento de Botánica y Fisiología Vegetal de la Universidad de Málaga han realizado un estudio que demuestra un patrón estacional: en verano y otoño se genera una alta densidad de nuevos individuos por multiplicación. El equipo señala que la delimitación de estos intervalos temporales en su comportamiento puede ayudar a las administraciones públicas a controlar de manera más eficaz a esta especie invasora.

Sigue leyendo
Obtienen lubricantes sostenibles a partir de nanofibras de celulosa
Huelva | 22 de marzo de 2025

Un equipo de investigación del Centro en Tecnología de Productos y Procesos Químicos (Pro2TecS) de la Universidad de Huelva (UHU) ha desarrollado nanoestructuras de tamaño inferior al pelo humano capaces de espesar fluidos. Estos materiales, aptos para producir grasas lubricantes respetuosas con el medio ambiente, permitirán la lubricación de rodamientos, ejes y articulaciones de todo tipo de maquinaria.

Sigue leyendo
Investigadores documentan que procesos nanoscópicos originaron riqueza de oro y plata en el Sur de México
Sevilla | 21 de marzo de 2025

La colaboración internacional ha documentado por primera vez desde hace más de 300 años la presencia de nanofundidos de oro y plata en yacimientos en explotación. Los científicos combinan el análisis a micro y nanoescala de fluidos y sólidos atrapados en cristales de cuarzo asociados a mineralizaciones metálicas.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido