VOLVER

Share

Científicos españoles describen cómo la arquitectura de conexiones del cerebro humano controla la actividad neuronal

Fuente: Universidad de Granada


10 de octubre de 2013

Científicos españoles han descrito de manera minuciosa cómo la arquitectura de conexiones del cerebro humano controla la actividad neuronal, demostrando que en él se producen continuamente pequeñas “avalanchas” o “terremotos” de actividad, con una variabilidad enorme de tamaños y formas óptimas, ni exclusivamente pequeñas, ni sistemáticamente grandes. Su trabajo, que podría ayudar a entender con más profundidad la conexión entre estructura y dinámica del cerebro y a avanzar en la comprensión que los cerebros humanos tienen de sí mismos, se publica esta semana en la prestigiosa revista Nature Communications.

Paolo Moretti y Miguel Ángel Muñoz, investigadores del Instituto Carlos I de Física Teórica y Computacional y del grupo de investigación en Física Estadística y de los Sistemas Complejos de la UGR, han arrojado nueva luz sobre el enigma científico de cómo la estructura del cerebro -es decir los detalles del enmarañado tejido de sus interconexiones- condiciona y afecta la actividad de las neuronas a nivel global, influenciando, por tanto, los procesos sensoriales y cognitivos.

En los últimos años, diversas investigaciones han permitido obtener una ingente cantidad de información sobre dos aspectos distintos y complementarios del cerebro humano: cómo es el diseño de la intrincadísima red de conexiones neuronales que constituyen el cableado estructural del cerebro, y cuáles son los mapas de actividad neuronal en distintas partes del cerebro, a distintas escalas de observación, durante la realización de distintas tareas sencillas o en reposo. Éste último descubrimiento ha sido posible gracias a mediciones de distinta naturaleza (magnetoencelografía, resonancia magnética funcional, potenciales de campos locales, etc.) que permiten obtener dichos mapas.

Como explica Miguel Ángel Muñoz, catedrático de Física Teórica y Computacional de la UGR, “utilizando una sencilla analogía es como si tuviéramos a nuestra disposición, por un lado, un detallado atlas de carreteras, y por otro, un mapa del tráfico en distintos y determinados momentos del día”.

El mapa de conexiones más preciso

Los científicos granadinos han empleado el mapa de las conexiones cerebrales más preciso elaborado hasta la fecha, llevado a cabo por el profesor Sporns, de la Universidad de Indiana (Estados Unidos). Usando como soporte la arquitectura de dicha red de interconexiones (la red de carreteras), los investigadores del Instituto Carlos I utilizaron modelos matemático-computacionales relativamente sencillos para analizar cómo la actividad neuronal se propaga por la red (esto es, siguiendo con la analogía del tráfico, como éste fluye en distintas condiciones).

Los modelos analizados en la UGR dan lugar de forma natural a la presencia de avalanchas de actividad, con propiedades muy curiosas e interesantes, en absoluto triviales. “Estos episodios de actividad o ‘avalanchas’ no podemos compararlos con el ejemplo del tráfico, porque para ello debería ocurrir que los coches, en un punto, pudiesen desdoblarse en varios y multiplicarse o evaporarse – explica Muñoz-. Por el contrario, se parecen a los terremotos o episodios de actividad sísmica que, a mayor o menor escala, continuamente perturban la superficie de la tierra, y que en un proceso de cascada desencadenan avalanchas sísmicas de gran variabilidad. Los episodios de actividad neuronal constituyen un mecanismo para entender cómo la información codificada en las neuronas viaja de un lugar a otro del cerebro, haciendo así posible la integración de toda la información, dando coherencia al sistema”.

En el artículo publicado en Nature Communications se demuestra, mediante cálculos matemáticos y el uso extensivo de simulaciones computacionales en el superordenador PROTEUS del Instituto Carlos I, que las avalanchas de actividad aparecen en el cerebro con una variabilidad enorme de tamaños y formas óptimas, ni exclusivamente pequeñas, ni sistemáticamente grandes.

Avalanchas de actividad neuronal

“Si las avalanchas fuesen demasiado breves, la información codificada en ellas no podría viajar de una parte a otra del cerebro y no habría una coherencia suficiente para las operaciones cognitivas. Por otro lado, si las avalanchas fuesen siempre demasiado intensas, el cerebro estaría en un estado perpetuo de terremoto devastador, o dicho con algo más de precisión, en un estado de perpetua actividad epiléptica. Ambas posibilidades serían nefastas para el correcto funcionamiento del cerebro y ambas se pueden relacionar con patologías mentales”, apuntan los autores.

A la luz de los resultados de este trabajo, la dinámica de las redes neuronales sanas parece operar justo en un punto crítico, en el límite entre los dos estados anteriores: la actividad se propaga de forma marginal, pudiendo llegar a todas partes pero sin sobresaturar el sistema, con un delicado balance de avalanchas pequeñas y grandes, de todas las escalas posibles. Moretti y Muñoz han demostrado que la arquitectura del cerebro a gran escala -que tiene una estructura organizada en distintas capas en modo jerárquico- es tal que hace que sea mucho más sencillo alcanzar este estado de avalanchas críticas de lo que se pensaba hasta el momento.

Este trabajo ha sido financiado por la Junta de Andalucía mediante un Proyecto de Excelencia y está auspiciado por el Campus de Excelencia Internacional (CEI) Biotic de la UGR .

Referencia bibliográfica:

Griffiths phases and the stretching of criticality in brain networks. Paolo Moretti and Miguel A. Muñoz. Departamento de Electromagnetismo y Física de la Materia and Instituto Carlos I de Fisica Teórica y Computacional, Facultad de Ciencias, Universidad de Granada. NATURE COMMUNICATIONS | 4:2521 | DOI: 10.1038/ncomms3521


Share

Últimas publicaciones

Proponen un enfoque educativo que amplíe el vocabulario del alumnado sordo en Educación Primaria
Málaga | 22 de diciembre de 2024

Un equipo de investigación de la Universidad de Málaga ha evaluado a casi un centenar de estudiantes de entre 8 y 12 años para entender mejor los desafíos léxicos a los que se enfrentan aquellos con pérdida auditiva. Las expertas sugieren un enfoque basado en relaciones entre determinadas clases de palabras para mejorar su aprendizaje y que puedan estudiar en igualdad de condiciones que sus compañeros oyentes.

Sigue leyendo
Navidad con ciencia en Andalucía
Andalucía | 20 de diciembre de 2024

Nos encontramos a menos de un día del solsticio de diciembre, que tendrá lugar a las 10:20 de este sábado, hora española. Esta efeméride marca el comienzo de las estación astronómicas de invierno para el hemisferio norte. Dejamos atrás el otoño, con sus tonalidades amarillas, naranjas y marrones, y damos paso al color blanco de los copos de nieve, a las luces de colores, y a las flores de pascua. Son algunos de los protagonistas de estas fiestas, que también tienen su ciencia. Por ello os proponemos descubrir diferentes curiosidades científicas relacionadas con la Navidad. ¿Sabías que el espumillón comenzó a fabricarse de aluminio y plomo y con el paso del tiempo ha variado su composición para hacerse ahora de PVC? ¿Te has preguntado alguna vez por qué las típicas flores de esta época del año son esas y no otras? ¿ O cuánto consumen las luces led del árbol que adornas cada año?

Sigue leyendo
Descubre aprueba el Plan de Actuación 2025, que impulsa la comunicación social de la innovación y el fortalecimiento del ecosistema andaluz de la comunicación social de la ciencia
Andalucía | 18 de diciembre de 2024

El consejero de Universidad, Investigación e Innovación, José Carlos Gómez Villamandos, ha presidido el Patronato celebrado en Sevilla. El Plan prevé el fomento además de la divulgación en el ámbito de la emergencia, la seguridad y la defensa, al tiempo que comenzarán los trabajos para la divulgación del trío de eclipses solares previstos en la Península para 2026, 2027 y 2028. La Fundación ha celebrado previamente el acto de reconocimiento de las personas y entidades Colaboradoras Extraordinarias de Descubre.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido