VOLVER

Share

Construyen los primeros robots vivientes

Un equipo de jóvenes investigadores estadounidenses ha reutilizado células vivas a partir de embriones de rana para darles una nueva forma de vida gracias a un superordenador. Estos biobots de un milímetro son capaces de moverse hacia un objetivo marcado, levantar carga útil o autocurarse tras un corte. Aunque la comunidad científica ya había intentado unir organismos artificiales a partir de formas animales, estas son las primeras máquinas completamente biológicas diseñadas desde cero.

Fuente: Agencia SINC


Internacional |
14 de enero de 2020

No son ni robots ordinarios ni una especie real de animales. Un grupo de científicos ha creado organismos simples de un milímetro con funciones personalizadas creados a partir de bloques de construcción biológicos específicos basados en un algoritmo evolutivo.

“Son máquinas vivas novedosas”, explica Joshua Bongard, experto en informática y robótica de la Universidad de Vermont (EE UU) y coautor de la nueva investigación que se publica en la revista PNAS junto al estudiante Sam Kriegman, primer autor. Los llamados ‘xenobots’, denominados así por la reutilización de células vivas obtenidas de embriones de rana de uñas africanas (Xenopus laevis), representan una nueva clase de artefacto.

Las nuevas máquinas vivas fueron diseñadas en una supercomputadora de la Universidad de Vermont y luego ensambladas y probadas por biólogos en la Universidad de Tufts (también en EE UU). Aunque la comunidad científica ya había intentado unir organismos artificiales a partir de formas animales, estas son las primeras máquinas completamente biológicas diseñadas desde cero.

“Podemos imaginar muchas aplicaciones útiles de estos robots vivos que otras máquinas no pueden hacer”, dice Michael Levin, director del Centro de Biología Regenerativa y del Desarrollo en Tufts y coautor del estudio. Estos biobots podrían buscar compuestos desagradables o contaminación radiactiva, recolectar microplásticos en los océanos o viajar en arterias para la administrar fármacos, entre otros.

Organismos vivos a medida

Procesados durante meses en el clúster de la supercomputadora Deep Green en el Vermont Advanced Computing Core de la universidad, los científicos utilizaron un algoritmo evolutivo para crear miles de diseños candidatos para las nuevas formas de vida. El ordenador ensambló una y otra vez cientos de células simuladas probando innumerables formas para intentar que estas máquinas cumplieran la tarea asignada por los investigadores: moverse en una dirección concreta.

A la izquierda, el plano anatómico de un organismo diseñado por ordenador. A la derecha, el organismo vivo, construido completamente a partir de piel de rana (verde) y células del músculo cardíaco (rojo). / Sam Kriegman (UVM).

A medida que se ejecutaban los programas, los organismos simulados más exitosos se mantuvieron y refinaron, mientras que los diseños fallidos se descartaron. Después de cien ejecuciones independientes del algoritmo, se seleccionaron los diseños más prometedores para la prueba.

El equipo de la Universidad de Tufts, dirigido por Levin y con el trabajo clave del microcirujano Douglas Blackiston, transfirió los diseños in silico a la vida. Primero recolectaron células madre de los embriones de las ranas (células de la piel y otras cardíacas) que luego se separaron en células individuales y se dejaron incubar. Después, usando unas pinzas diminutas y un electrodo aún más pequeño, las células se cortaron y unieron bajo un microscopio en una aproximación cercana de los diseños especificados por la computadora.

Ensambladas en formas corporales nunca vistas en la naturaleza, las células comenzaron a trabajar juntas. Las de la piel formaron una arquitectura más pasiva, mientras que las contracciones aleatorias de las células del músculo cardíaco creaban un movimiento ordenado hacia adelante, según el diseño de la computadora, y ayudado por patrones espontáneos de autoorganización. Esto permitió a los robots moverse por sí mismos.

Los investigadores demostraron así que estos organismos reconfigurables pueden moverse de manera coherente y explorar su entorno acuoso durante días o semanas, impulsados ​​por depósitos de energía embrionaria. Sin embargo, si se volcaban estos fallaban.

Las pruebas posteriores mostraron que un grupo de xenobots podrían moverse en círculos hacia una posición central de forma espontánea y colectiva. Otros fueron construidos con un agujero en el centro para reducir la resistencia. En las versiones simuladas, este agujero se reutilizó como una bolsa para transportar con éxito un objeto.

“Es un paso hacia el uso de organismos diseñados por computadora para la entrega inteligente de medicamentos”, apunta Bongard, profesor en el departamento de Ciencias de la Computación y Centro de Sistemas Complejos de la Universidad de Vermont.

Ventajas de la tecnología viva

La mayoría de las máquinas actuales están fabricadas a partir de materiales como el acero, el hormigón o el plástico, con cierta resistencia y flexibilidad. Sin embargo, estas tecnologías son susceptibles de crear problemas ecológicos y de salud, como la contaminación plástica en los océanos o la toxicidad de muchos materiales sintéticos y electrónicos. ¿Qué ocurría con un material biológico?

Un organismo 3D diseñado por un algoritmo evolutivo y construido a partir de células vivas. / Douglas Blackiston.

“La desventaja del tejido vivo es que es débil y se degrada, por eso usamos acero. Pero los organismos tienen 4.500 millones de años de práctica para regenerarse y continuar durante décadas”, indica el investigador. Además, una vez que dejan de trabajar, es decir que mueren, generalmente se desintegran sin causar daño.

“Estos ‘xenobots’ son completamente biodegradables. Cuando terminan su trabajo después de siete días, son solo células muertas de la piel”, recalca Bongard.

Por otra parte, contrariamente a ciertos materiales que no pueden cortarse por la mitad, estas máquinas orgánicas son capaces de regenerarse si sufren un corte. En los experimentos, los científicos cortaron los ‘xenobots’ casi por la mitad y estos se recomponían y continuaban. “Esto es algo que no puedes hacer con las máquinas ordinarias”, señalan.

Hacia la configuración de nuevas formas de vida

Comprender cómo las células se comunican y se conectan para crear formas y funciones de vida diferentes permitirá aplicaciones que transformarán el futuro de la biología y la informática. Los científicos ven este estudio como “un canal expansible para diseñar organismos reconfigurables”, de hecho, es el título de su trabajo, es decir, como un paso en la aplicación de ideas de un código bioeléctrico.

“¿Qué determina realmente la anatomía hacia la cual cooperan las células?”, se pregunta Levin. “Miras a las células con las que hemos estado construyendo nuestros ‘xenobots’ y, genómicamente, son ranas. Es 100 % ADN de rana, pero no son ranas. Luego preguntas, ¿qué más son capaces de construir estas células?”, continúa Levin.

Como ha demostrado la investigación, estas células de rana pueden inducir a generar formas de vida interesantes que son completamente diferentes de lo que sería su anatomía predeterminada. El equipo de investigadores cree que construir los ‘xenobots’ es un pequeño paso para descifrar lo que Levin llama el “código morfogenético”, proporcionando una visión más profunda de la forma general en que se organizan los organismos, y cómo calculan y almacenan la información en función de sus historias y entorno.

estos organismos reconfigurables pueden moverse de manera coherente.

Ante esto surge una preocupación respecto a las implicaciones del cambio tecnológico y sobre todo las manipulaciones biológicas que se puedan producir en el futuro. Aunque “ese miedo no es irrazonable”, dice Levi, es necesario comprender mejor cómo las propiedades complejas de alguna manera emergen de reglas simples.

“Este estudio permitirá controlar lo que la gente teme, es decir las consecuencias no deseadas”, dice Levin, ya sea en la rápida llegada de automóviles autónomos, el cambio de unidades genéticas para eliminar linajes enteros.  de virus, o los muchos otros sistemas complejos y autónomos que moldearán cada vez más la experiencia humana.


Share

Últimas publicaciones

La Fundación Descubre invita a las personas mayores de 60 años a convertirse en científicos ciudadanos y compartir con MonuMAI sus fotos de monumentos de viajes
Andalucía | 03 de junio de 2020

El proyecto de ciencia ciudadana promovido junto a la Universidad de Granada desarrolla un sistema inteligente que reconoce los diferentes estilos a través de una app dotada de inteligencia artificial y aporta información sobre las proporciones y otros elementos geométricos en el arte. El científico ciudadano que más imágenes aporte a MonuMAI antes del 15 de junio ganará una observación astronómica para 6 personas.

Sigue leyendo
El nanosatélite ‘UCAnFly’, seleccionado en el programa ‘Fly Your Satellite!’ de la Agencia Espacial Europea
Cádiz | 03 de junio de 2020

El nanosatélite UCAnFly de la Escuela Superior de Ingeniería (ESI) de la Universidad de Cádiz ha sido finalmente seleccionado por la Agencia Espacial Europea para el programa Fly Your Satellite! (FYS), cuyo propósito es acercar la tecnología y las ciencias del espacio a las universidades mediante el desarrollo y lanzamiento de un nanosatélite. Con ello, seguirá el camino para llegar a ser el primer nanosatélite andaluz lanzado al espacio.

Sigue leyendo
Un estudio sobre el impacto del confinamiento revela que el apoyo en las tareas escolares y la limpieza del hogar recae más sobre las mujeres
Córdoba | 03 de junio de 2020

La pandemia originada por el coronavirus SARS-CoV-2 ha generado numerosas consecuencias que traspasan el ámbito sanitario. Según los resultados preliminares de un estudio coordinado por el grupo INCIDE (Infancia, Ciudadanía, Democracia y Educación), de la Universidad de Córdoba, en el que participan las universidades públicas andaluzas, algunos de los estragos ocasionados como consecuencia de la COVID-19 tienen un efecto más negativo sobre la mujer. Entre ellos, la brecha laboral de género, que, según el trabajo, ha experimentado un leve repunte a lo largo de los últimos meses.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Este sitio web utiliza cookies para mejorar tu experiencia. Continuando la navegación aceptas su uso. Más información

Los ajustes de cookies de esta web están configurados para "permitir cookies" y así ofrecerte la mejor experiencia de navegación posible. Si sigues utilizando esta web sin cambiar tus ajustes de cookies o haces clic en "Aceptar" estarás dando tu consentimiento a esto.

Cerrar