VOLVER

Share

Crean un modelo de inteligencia artificial para detectar la COVID-19 mediante radiografías

Un equipo de la Universidad de Granada y el Hospital Universitario Clínico San Cecilio de Granada ha culminado el desarrollo de un modelo de inteligencia artificial para detectar la existencia de COVID-19 en pacientes con afectación pulmonar a través de la radiografía de tórax que, en una segunda fase de investigación, pretende también predecir el tiempo de ingreso hospitalario.

Fuente: Universidad de Granada


Granada |
09 de diciembre de 2020

Un equipo de la Universidad de Granada (UGR) y el Hospital Universitario Clínico San Cecilio de Granada ha culminado el desarrollo de un modelo de inteligencia artificial para detectar la existencia de COVID-19 en pacientes con afectación pulmonar a través de la radiografía de tórax que, en una segunda fase de investigación, pretende también predecir el tiempo de ingreso hospitalario.

El proyecto, respaldado por la Fundación BBVA con 150.000 euros, ha concluido su primera fase de investigación con el desarrollo de esta herramienta de inteligencia artificial basada en algoritmos de aprendizaje profundo que permite identificar si un paciente tiene COVID-19 de acuerdo con la imagen del pulmón obtenida a través de una radiografía de tórax, explica Francisco Herrera, catedrático de Inteligencia Artificial de la Universidad de Granada.

Además, el nivel de afectación pulmonar -si leve, moderado o severo- también puede ser analizado a través de este modelo, que, según los investigadores, ahorra tiempo y costes en relación a la PCR, la prueba que se emplea actualmente como el principal test más validado para detectar la presencia de la infección por COVID-19.

Francisco Herrera (arriba) y José Luis Martín, autores del estudio.

«Si un paciente llega a cualquier centro de salud con un síntoma de pulmón, se le hace una radiografía que en diez minutos puede dar la alarma si tiene COVID-19 y apreciar también el nivel de gravedad», detalla.

Algunos de los resultados obtenidos en esta primera fase ahora concluida, que han sido publicados en la revista IEEE Journal of Biomedical and Health, apuntan a una tasa media de acierto de entre el 75 y el 80% en la detección de los casos positivos, por encima de la actual de un radiólogo, que ronda el 69%.

En una segunda fase de la investigación, que prevé iniciarse el próximo mes de enero, el objetivo es utilizar la radiografía para hacer otras predicciones como el tiempo de ingreso hospitalario que requerirá el paciente en función de la gravedad, lo que permitiría a los hospitales hacer una previsión de camas, según Herrera.

A esa predicción se llegaría uniendo la imagen médica con la clínica del paciente.

También se proyecta desarrollar y adaptar el sistema para que sea capaz de diferenciar los pacientes afectados de COVID-19 de aquellos aquejados por otro tipo de enfermedades pulmonares, como las neumonías bacterianas u otras virales.

Una de las ventajas que aporta el uso de la radiografía de tórax para este tipo de detecciones es que son mayoría los hospitales y centros sanitarios con la maquinaria necesaria para ello, que habría que complementar con este nuevo modelo de inteligencia artificial, según el catedrático.

La idea, explica Herrera, es que se pueda acceder a él a través de una app, de modo que, llegado el caso, esta herramienta de inteligencia artificial pudiera, manteniendo la privacidad de datos, analizar la radiografía a partir de una fotografía tomada con el móvil, lo que requiere del diseño de un software en el que ya trabajan.

En el proyecto, coordinado por la Universidad de Granada y el Hospital Universitario Clínico San Cecilio de Granada, participa un equipo multidisciplinar de trece instituciones e investigadores de Jaén, Córdoba, Navarra, Madrid, Santiago o Elche.


Share

Últimas publicaciones

Un nuevo método ecológico identifica altos niveles de triptófano en setas silvestres
Cádiz | 25 de diciembre de 2024

Un grupo de investigación de la Universidad de Cádiz ha empleado un sistema de extracción ‘verde’ para identificar la cantidad de este aminoácido esencial, necesario para producir proteínas, así como la hormona melatonina y el neurotransmisor serotonina en el organismo. Tras los ensayos, realizados con hongos comestibles del sur de Andalucía y el norte de Marruecos, los resultados evidencian su alta concentración en este tipo de alimentos y abre nuevas vías de estudio para determinar su potencial terapéutico.

Sigue leyendo
Proponen un enfoque educativo que amplíe el vocabulario del alumnado sordo en Educación Primaria
Málaga | 22 de diciembre de 2024

Un equipo de investigación de la Universidad de Málaga ha evaluado a casi un centenar de estudiantes de entre 8 y 12 años para entender mejor los desafíos léxicos a los que se enfrentan aquellos con pérdida auditiva. Las expertas sugieren un enfoque basado en relaciones entre determinadas clases de palabras para mejorar su aprendizaje y que puedan estudiar en igualdad de condiciones que sus compañeros oyentes.

Sigue leyendo
Navidad con ciencia en Andalucía
Andalucía | 20 de diciembre de 2024

Nos encontramos a menos de un día del solsticio de diciembre, que tendrá lugar a las 10:20 de este sábado, hora española. Esta efeméride marca el comienzo de las estación astronómicas de invierno para el hemisferio norte. Dejamos atrás el otoño, con sus tonalidades amarillas, naranjas y marrones, y damos paso al color blanco de los copos de nieve, a las luces de colores, y a las flores de pascua. Son algunos de los protagonistas de estas fiestas, que también tienen su ciencia. Por ello os proponemos descubrir diferentes curiosidades científicas relacionadas con la Navidad. ¿Sabías que el espumillón comenzó a fabricarse de aluminio y plomo y con el paso del tiempo ha variado su composición para hacerse ahora de PVC? ¿Te has preguntado alguna vez por qué las típicas flores de esta época del año son esas y no otras? ¿ O cuánto consumen las luces led del árbol que adornas cada año?

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido