Crean un modelo de inteligencia artificial para detectar la COVID-19 mediante radiografías
Un equipo de la Universidad de Granada y el Hospital Universitario Clínico San Cecilio de Granada ha culminado el desarrollo de un modelo de inteligencia artificial para detectar la existencia de COVID-19 en pacientes con afectación pulmonar a través de la radiografía de tórax que, en una segunda fase de investigación, pretende también predecir el tiempo de ingreso hospitalario.
Fuente: Universidad de Granada
Un equipo de la Universidad de Granada (UGR) y el Hospital Universitario Clínico San Cecilio de Granada ha culminado el desarrollo de un modelo de inteligencia artificial para detectar la existencia de COVID-19 en pacientes con afectación pulmonar a través de la radiografía de tórax que, en una segunda fase de investigación, pretende también predecir el tiempo de ingreso hospitalario.
El proyecto, respaldado por la Fundación BBVA con 150.000 euros, ha concluido su primera fase de investigación con el desarrollo de esta herramienta de inteligencia artificial basada en algoritmos de aprendizaje profundo que permite identificar si un paciente tiene COVID-19 de acuerdo con la imagen del pulmón obtenida a través de una radiografía de tórax, explica Francisco Herrera, catedrático de Inteligencia Artificial de la Universidad de Granada.
Además, el nivel de afectación pulmonar -si leve, moderado o severo- también puede ser analizado a través de este modelo, que, según los investigadores, ahorra tiempo y costes en relación a la PCR, la prueba que se emplea actualmente como el principal test más validado para detectar la presencia de la infección por COVID-19.
«Si un paciente llega a cualquier centro de salud con un síntoma de pulmón, se le hace una radiografía que en diez minutos puede dar la alarma si tiene COVID-19 y apreciar también el nivel de gravedad», detalla.
Algunos de los resultados obtenidos en esta primera fase ahora concluida, que han sido publicados en la revista IEEE Journal of Biomedical and Health, apuntan a una tasa media de acierto de entre el 75 y el 80% en la detección de los casos positivos, por encima de la actual de un radiólogo, que ronda el 69%.
En una segunda fase de la investigación, que prevé iniciarse el próximo mes de enero, el objetivo es utilizar la radiografía para hacer otras predicciones como el tiempo de ingreso hospitalario que requerirá el paciente en función de la gravedad, lo que permitiría a los hospitales hacer una previsión de camas, según Herrera.
A esa predicción se llegaría uniendo la imagen médica con la clínica del paciente.
También se proyecta desarrollar y adaptar el sistema para que sea capaz de diferenciar los pacientes afectados de COVID-19 de aquellos aquejados por otro tipo de enfermedades pulmonares, como las neumonías bacterianas u otras virales.
Una de las ventajas que aporta el uso de la radiografía de tórax para este tipo de detecciones es que son mayoría los hospitales y centros sanitarios con la maquinaria necesaria para ello, que habría que complementar con este nuevo modelo de inteligencia artificial, según el catedrático.
La idea, explica Herrera, es que se pueda acceder a él a través de una app, de modo que, llegado el caso, esta herramienta de inteligencia artificial pudiera, manteniendo la privacidad de datos, analizar la radiografía a partir de una fotografía tomada con el móvil, lo que requiere del diseño de un software en el que ya trabajan.
En el proyecto, coordinado por la Universidad de Granada y el Hospital Universitario Clínico San Cecilio de Granada, participa un equipo multidisciplinar de trece instituciones e investigadores de Jaén, Córdoba, Navarra, Madrid, Santiago o Elche.
Últimas publicaciones
Investigadores del Centro Nacional de Análisis Genómico han lanzado esta herramienta biomédica, una base de datos exhaustiva en la que han analizado más de 6,5 millones de células de la sangre procedentes de 1.000 personas, tanto individuos sanos como pacientes de 19 enfermedades diferentes.
Sigue leyendoUn estudio desarrollado por la Universidad de Granada y el ibs.GRANADA, con la colaboración de la Fundación Cellbitec, demuestra la eficaciade los extractos de semilla de la berenjena S0506 frente al cáncer de colon, tanto en laboratorio como en modelos animales.
Sigue leyendoUn equipo de investigación del Instituto de Agricultura Sostenible del CSIC de Córdoba ha confirmado la mejora en la respuesta al estrés hídrico de un tipo de trigo con bajo contenido en este alérgeno. Los resultados obtenidos mediante técnicas genéticas abren nuevas vías para la elaboración de productos sin este compuesto a partir del mismo cultivo.
Sigue leyendo



