VOLVER

Share

Desarrollan modelos más sencillos y baratos para estimar la aridez de una zona

Este estudio, dirigido por la Universidad de Córdoba, se puede utilizar en países en vías de desarrollo o en zonas rurales con estaciones meteorológicas que midan solo temperatura. Para comprobar este sistema han tomado datos de cinco estaciones presentes en distintas zonas de Andalucía con diferentes características climáticas y geográficas, desde zonas áridas de interior como Tabernas, estaciones costeras como Málaga y muy húmedas como la de Aroche en Huelva.
 

Fuente: Universidad de Córdoba


Córdoba |
18 de noviembre de 2020

El índice de aridez de una zona, según el Programa de Medio Ambiente de las Naciones Unidas, se calcula mediante la relación entre la precipitación y la evapotranspiración de referencia, es decir, la cantidad de agua que pierde un cultivo estándar de pasto, con una altura asumida de 12 centímetros debido a la evaporación y transpiración de las plantas. Sin embargo, para calcular la evapotranspiración de referencia se necesitan medir numerosas variables meteorológicas como la temperatura, la humedad relativa, la velocidad del viento, la radiación solar, la presión atmosférica o el flujo de calor del suelo, entre otras.

Suelo árido.

Para calcular este parámetro se necesitan, por tanto, estaciones meteorológicas denominadas completas que alberguen todos los sensores necesarios, teniendo asociado un elevado coste de instalación y mantenimiento. En Andalucía, las estaciones agrometeorológicas que miden todos estos valores se encuentran distribuidas por todo el territorio pero, a pesar de que existen más de cien en toda la región, hay zonas rurales para las que la estación más cercana se encuentra a más de 50 kilómetros, no siendo representativa la estimación de la evapotranspiración de referencia en dichas zonas.

Para avanzar en la mejora de las estimaciones de esta variable, un equipo de la Universidad de Córdoba ha desarrollado modelos más precisos para calcular este parámetro utilizando únicamente una base de datos de temperatura. Este mismo equipo investigador ha trabajado anteriormente en otras investigaciones para la mejora de predicciones meteorológicas. Por ejemplo, hace unos meses publicó un trabajo donde conseguían pronosticar satisfactoriamente la precipitación en Andalucía mediante inteligencia artificial (https://doi.org/10.3390/w12071909).

«Las estaciones agrometeorológicas estiman de manera precisa la evapotranspiración de referencia pero su equipamiento y mantenimiento son demasiado caros para que existan todas las que serían necesarias. La medición de temperatura, por el contrario, está muy extendida y se puede realizar con equipos low-cost, baratos y fiables», explica Juan Antonio Bellido, que ha realizado esta investigación dentro de su tesis doctoral «Modelos inteligentes para la mejora de estimaciones y predicciones agrometeorológicas» junto al profesor Javier Estévez (EPS) del grupo de investigación de Hidrología e Hidráulica Agrícola y la profesora Amanda García Marín (ETSIAM) del grupo de investigación Complex Geometry, Patterns and Scaling in Natural and Human Phenomena, ambos de la Universidad de Córdoba.

Juan Antonio Bellido, Amanda García Marín y Javier Estévez, investigadores del estudio.

Un modelo sencillo y barato

A partir de la base de datos de temperatura, el equipo utilizó variables ya empleadas en modelos empíricos como la temperatura máxima o mínima diaria, aunque una de las principales novedades del trabajo ha sido la creación de dos nuevas variables para caracterizar cada día desde un punto de vista térmico.

«Una la hemos denominado EnergyT, que representa la integral de la temperatura a lo largo del día, y la variable Hourmin, en la que medimos la diferencia entre la hora a la que ocurre la temperatura máxima y la hora en la que sale el sol», señala Juan Antonio Bellido.

Para ello, han tomado datos de cinco estaciones presentes en distintas zonas de Andalucía con diferentes características climáticas y geográficas, desde zonas áridas de interior como Tabernas, estaciones costeras como Málaga y muy húmedas como la de Aroche en Huelva. Con esta información, el equipo ha llegado a desarrollar un total de seis modelos distintos basados en inteligencia artificial y once configuraciones de parámetros de entrada distintos para evaluar la mejora de las estimaciones.

Estos modelos han resultado muy fiables y mejorarían la estimación de la evapotranspiración de referencia en estaciones donde los datos son limitados como en países en vías desarrollo o en estaciones climáticas pequeñas que no pueden recoger todos los datos meteorológicos necesarios para estimar la evapotranspiración según el modelo de Penman-Monteith propuesto por la FAO. De este modo, se podría avanzar en una mejora de la gestión de recursos hídricos de una forma más barata y sencilla.

Esta investigación forma parte del proyecto Smarity (AGL2017-87658-R), financiado por el Plan Nacional I+D+i Retos de la Sociedad del Ministerio de Ciencia que busca soluciones contra la aridez climática en el sur de España y que se encarga de predecir de forma inteligente la variabilidad espacio-temporal de la aridez y sus efectos en la agricultura y el medio ambiente.

Referencia bibliográfica:
Juan Antonio Bellido Jiménez, Javier Estévez, Amanda Penélope García-Marín. New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variabels in a semi-arid region of Spain. Agricultural Water Management. Doi: https://doi.org/10.1016/j.agwat.2020.106558


Share

Últimas publicaciones

Desarrollan un método para descifrar cómo interactúan las regiones del cerebro
Málaga | 10 de septiembre de 2025

Un equipo de investigación de la Universidad de Málaga presenta una herramienta estadística para identificar de forma precisa conexiones cerebrales incluso cuando la señal está distorsionada e incompleta. Este modelo es aplicable a contextos clínicos como el estudio de enfermedades neurodegenerativas como el Alzheimer o el Parkinson, el procesamiento del lenguaje o el desarrollo neurotecnológico.

Sigue leyendo
La exposición a una sustancia química presente en botellas puede alterar el desarrollo de los bebés incluso antes de nacer
Granada | 08 de septiembre de 2025

Esta es una de las conclusiones del estudio que ha realizado un equipo de científicos de la Universidad de Granada con ratones de laboratorio y que ha detectado también el impacto de estos químicos en la proliferación de la obesidad infantil.

Sigue leyendo
Añaden algas en la dieta de las vacas para reducir las emisiones de gases de efecto invernadero
Granada | 03 de septiembre de 2025

Un equipo de investigación andaluz junto con expertos de Reino Unido comprueba que el contenido en compuestos antioxidantes de estos organismos marinos mitiga la emisión de metano hasta un 40%, en una digestión simulada en rumiantes.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido