Desarrollan un clon infectivo del SARS-CoV-2 para estudiar su biología molecular
Investigadores españoles han participado en la creación de una nueva herramienta biológica que permite generar variantes genéticas del coronavirus para estudiarlo, analizar fármacos antivirales y poder desarrollar candidatos vacunales.
Fuente: Agencia SINC
Un equipo internacional con participación del Consejo Superior de Investigaciones Científicas (CSIC) ha desarrollado una herramienta fundamental para estudiar el SARS-CoV-2. Los expertos han generado un clon infectivo del virus a partir del uso de cromosomas artificiales bacterianos, lo que podría ser fundamental para conocer detalles esenciales del ciclo viral y su patogenicidad, así como para desarrollar nuevos tratamientos antivirales y vacunas vivas atenuadas.

Mediante el uso de un cromosoma artificial bacteriano se genera un clon infectivo del SARS-CoV-2. / CDC
Este trabajo, publicado en la revista mBio, está dirigido por Luis Martínez-Sobrido, investigador del Instituto de Investigaciones Biomédicas de Texas en EE UU, y ha contado con la colaboración de Fernando Almazán, del Centro Nacional de Biotecnología (CNB-CSIC), y de Juan Carlos de la Torre, del Instituto de investigación Scripps de San Diego (La Joya, EE UU).
“La generación de clones infectivos de virus pertenecientes a la familia de los coronavirus presenta varias dificultades técnicas debido al gran tamaño del genoma viral (alrededor de 30 kilobases) y a la toxicidad de ciertas secuencias del genoma viral cuando son amplificadas en bacterias”, explica Almazán.
“Se ha recurrido a la utilización de cromosomas artificiales bacterianos para la generación de un clon infectivo estable del SARS-CoV-2, ya que estos plásmidos permiten clonar secuencias exógenas de gran tamaño y minimizan los problemas de toxicidad. Esta tecnología se ha aplicado previamente con éxito para generar clones infectivos de otros coronavirus y otros virus como el zika”, añade.
Una potente herramienta
En este sistema, a partir de fragmentos de ADN sintéticos que abarcan el genoma completo del virus, se genera una copia ADN del genoma viral que se ensambla en el cromosoma artificial bacteriano bajo el control de un promotor reconocido por la maquinaria celular. Posteriormente, el clon infectivo generado se introduce en la célula, donde es transcrito por la maquinaria celular, generándose copias del genoma viral que inician el ciclo de la infección y dan lugar a partículas virales infectivas.
“Mientras que los clones generados mediante otros sistemas son más inestables, y requieren de múltiples plásmidos, el uso de cromosomas artificiales bacterianos permite utilizar un único plásmido para generar virus sintéticos en cultivos celulares”, destaca Martínez-Sobrido.
Así, los investigadores han comprobado la estabilidad del virus producido y los efectos de la infección en hámsteres, donde han observado que la patogenicidad y capacidad infectiva es similar a la del virus original.
Según concluye Fernando Almazán, este sistema es útil para la manipulación genética del virus, el desarrollo de sistemas de análisis para determinar la efectividad de nuevos antivirales, y la eliminación de factores de virulencia que conduzcan a la producción de vacunas vivas atenuadas.
Últimas publicaciones
Investigadores de la Universidad de Huelva han utilizado miles de observaciones ciudadanas para cruzarlas con variables ambientales como la salinidad, la productividad del agua o la dirección de las corrientes. El análisis permitió generar mapas de probabilidad de presencia y detectar patrones que podrían ser útiles para desarrollar sistemas de alerta temprana en la costa andaluza.
La noche del 10 de agosto, numerosas personas fueron testigos de la desintegración de la cuarta etapa del cohete Jielong-3 que lanzó al espacio China el pasado 8 de agosto. Esta bola de fuego artificial fue registrada por los detectores que el Proyecto SMART opera en los observatorios de Calar Alto (Almería), La Hita (Toledo), Sierra Nevada (Granada), Otura (Granada), Huelva y Sevilla.
Sigue leyendoUn equipo de investigación de la Universidad de Huelva ha ampliado la acción de dos medicamentos mediante su administración en nanotubos de carbono. Con esta estrategia probada en laboratorio consiguen que actúen de manera más precisa en el foco de infección y que su efecto dure más tiempo.