VOLVER

Share

Desarrollan un método de optimización para el diseño computacional de aplicaciones industriales

Los investigadores de la Escuela de Ingenierías Industriales de la Universidad de Málaga Francisco Javier Granados Ortiz y Joaquín Ortega Casanova han diseñado una nueva metodología utilizando algoritmos de Machine Learning para predecir qué combinaciones de los parámetros del diseño de un problema van a ser útiles y cuáles no, en función del objetivo que se persiga, y así guiar el proceso de diseño. En concreto, este procedimiento ha sido aplicado al diseño de un mezclador mecánico que produce un aumento considerable de la transferencia de calor/intercambio de masa entre dos fluidos, gracias al desprendimiento de vórtices, lo que se traduce en un flujo de características oscilatorias.

Fuente: Universidad de Málaga


Málaga |
19 de julio de 2021

En el campo de la Ingeniería Industrial el uso de simulaciones para modelar, predecir e, incluso, optimizar la respuesta de un sistema o dispositivo está muy extendido, puesto que resulta más económico y menos complejo -y, a veces, menos peligroso- que construir varios prototipos y testarlos.

Para este tipo de estudios de simulación se utilizan métodos numéricos que, dependiendo del problema a tratar -por ejemplo, disminuir las fuerzas aerodinámicas de un avión cambiando su forma o usar el mínimo material posible en un elemento sometido a cargas sin que se rompa-, requieren simular una elevada variedad de posibles casos combinacionales, lo que implica costes computacionales muy elevados.

Los investigadores de la Escuela de Ingenierías Industriales de la Universidad de Málaga Francisco Javier Granados Ortiz y Joaquín Ortega Casanova han dado un paso más con el desarrollo de un novedoso método de optimización por diseño computacional que, mediante el uso de inteligencia artificial, disminuye estos costes de simulación.

Los investigadores Joaquín Ortega y Francisco Javier Granados, autores de este nuevo método.

Diseños más rápidos y con menor coste

Han diseñado una nueva metodología utilizando algoritmos de Machine Learning para predecir qué combinaciones de los parámetros del diseño de un problema van a ser útiles y cuáles no, en función del objetivo que se persiga, y así guiar el proceso de diseño.

“El uso de este método permite la obtención de diseños optimizados más rápidos al descartar simulaciones de poco o nulo interés y, así, ahorrar costes no solo en construcción de prototipos físicos, sino también de simulación”, explican los investigadores del Área de Mecánica de Fluidos.

En concreto, este procedimiento ha sido aplicado al diseño de un mezclador mecánico que produce un aumento considerable de la transferencia de calor/intercambio de masa entre dos fluidos, gracias al desprendimiento de vórtices, lo que se traduce en un flujo de características oscilatorias. “En función de los parámetros de diseño del mezclador, utilizando nuestro método, hemos comprobado que este flujo puede controlarse y lograr un aumento eficiente del mezclado, pero a la vez una disminución de la caída de presión dentro del mismo”, afirma Ortega Casanova.

Estructura de la mezcla en el microdispositivo bajo diferentes diseños del mismo.

Los resultados de esta investigación han sido publicados en la revista científica Physics of Fluids que, además, ha seleccionado esta publicación como ‘Editor’s Pick’ –publicación destacada por parte del editor-.

El estudio ha contado con la ayuda de manera conjunta de la UMA y la Junta de Andalucía a través de los fondos FEDER de la Unión Europea, así como con fondos del Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI) 2020, mediante la beca postdoctoral de Granados Ortiz.

Referencia bibliográfica:

Granados Ortiz, F.J. y Ortega-Casanova, J. (2021) Machine learning-aided design optimisation of a mechanical micromixer. Physics of Fluids; (33): 063604 https://doi.org/10.1063/5.0048771


Share

Últimas publicaciones

Analizan la relación de bacterias con residuos plásticos agrícolas para combatir su impacto en el campo
Córdoba | 05 de mayo de 2025

Científicos del Instituto de Agricultura Sostenible de Córdoba han diseñado una metodología para analizar por separado los microorganismos que habitan sobre los fragmentos de acolchados plásticos que cubren el suelo en la agricultura intensiva y los que viven en las partículas de tierra que se quedan adheridas. El trabajo podría ayudar a identificar bacterias capaces de degradar este material y contribuir así a la búsqueda de soluciones biológicas para combatir su acumulación en el campo.

Sigue leyendo
Diseñan un sistema inteligente de videovigilancia en tiempo real para aeropuertos
Málaga | 01 de mayo de 2025

Investigadores de la Universidad de Málaga han desarrollado un algoritmo de Inteligencia Artificial (IA) que realiza un agrupamiento no supervisado de objetos similares evitando el etiquetado manual. Este modelo es capaz de detectar una gran diversidad de elementos en la zona de pistas de un aeródromo, desde personas hasta aviones. Otra de las novedades es su optimización para ahorrar tiempo de cálculo y energía en las tareas de identificación, de forma que permite su uso en dispositivos de bajo consumo.

Sigue leyendo
Un nuevo estudio relaciona la exposición a bisfenoles presentes en alimentos con el sobrepeso en niñas
Granada | 30 de abril de 2025

El estudio, liderado por el Instituto de Investigación Biosanitaria de Granada con la participación de la Universidad de Granada, reveló que las niñas con mayor exposición al bisfenol A presentaban un riesgo casi tres veces mayor de desarrollar sobrepeso u obesidad. El hallazgo destaca la necesidad de seguir investigando sobre la relación entre contaminantes ambientales y enfermedades metabólicas para mejorar el bienestar de la población infantil.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido