Desarrollan un método que mejora la evaluación de la calidad en la predicción de los sistemas de diagnóstico médico
Investigadores de la Universidad Pablo de Olavide han propuesto un método innovador para la evaluación de sistemas de diagnóstico, denominado curva IMCP, que muestra el rendimiento de la clasificación y, por otro lado, identifica para qué valores de la variable objetivo el modelo está ofreciendo mejor o peor calidad en la predicción.
Fuente: Universidad Pablo de Olavide
En el campo de la biomedicina, la evaluación de la calidad de los sistemas de diagnóstico es fundamental para garantizar que se aplican soluciones adecuadas. En los modelos predictivos tiene especial relevancia el hecho de que los valores objeto de estudio son de distinta clase (multiclase) y estas clases a su vez presentan una gran variedad en su frecuencia. Es lo que se conoce como desbalanceo o desequilibrio de datos.
En contextos médicos es de suma importancia disponer de un método capaz de mostrar la calidad del sistema en cuanto a las predicciones que realiza. Hasta ahora, para evaluar de forma gráfica la calidad de un sistema de diagnóstico solo existía la curva ROC (Receiver Operating Characteristic), un análisis utilizado para medir el coste/beneficio de decisiones diagnósticas, pero que no funciona con conjuntos de datos multiclase como, por ejemplo, distintos tipos de tumores.
Investigadores del grupo Data Analytics Science & Engineering, liderado por Jesús Aguilar, catedrático de Lenguajes y Sistemas Informáticos de la Universidad Pablo de Olavide, en colaboración con Marcin Michalak, investigador de la Silesian University of Technology (Polonia), han propuesto un método innovador para la evaluación de sistemas de diagnóstico, denominado curva IMCP, que muestra el rendimiento de la clasificación y, por otro lado, identifica para qué valores de la variable objetivo el modelo está ofreciendo mejor o peor calidad en la predicción.
La curva IMPC (Imbalanced Multiclass Classification Performance) ha sido evaluada en la predicción de 35 tipos de tumores a partir de una colección de 6.756 muestras de tumores metastásicos y primarios obtenidos por la Hartwig Medical Foundation (Países Bajos) y el Pan-Cancer Analysis of Whole Genomes Consortium, analizando un total de 511 características. Como resultado, se revela que un modelo predictivo para tumores aparentemente fiable (92,4% de exactitud en la predicción), podría mostrar un comportamiento desigual para diferentes tipos de tumores (bueno en la predicción de melanoma, pero malo en el caso de sarcoma), lo que necesariamente debería conducir a un examen humano más detallado en el caso de ciertos tipos de tumores, en consonancia con la fiabilidad del sistema de diagnóstico para esos casos.
El análisis propuesto por Aguilar y Michalak permite evaluar el rendimiento para cada valor por separado. De este modo, revela en qué casos el rendimiento global oculta distintos resultados para diferentes tipos de valores (multiclase). Así, si el rendimiento global es del 92,4%, podría darse el caso en que el sistema diagnostique el melanoma con una exactitud del 98,6%, pero el sarcoma con 17,5%. Por tanto, la curva IMCP posibilita identificar la fiabilidad de la predicción a partir de conjuntos de datos de distinta clase.
El método, basado en el cálculo de distancias de funciones de distribución de probabilidad, es aplicable en contextos en donde la curva ROC no puede usarse, cubriendo un vacío existente en la actualidad en el campo de machine learning, con utilidad en multitud de disciplinas.
La curva IMCP puede visualizarse con facilidad a partir de las probabilidades de asignación a cada valor de la variable objetivo proporcionadas por el sistema de diagnóstico, mediante el uso de una librería implementada en Python, de acceso libre y código abierto, publicada en https://github.com/adaa-polsl/imcp. El trabajo ha sido publicado por la editorial Springer-Nature.
Referencia:
Aguilar-Ruiz, J.S., Michalak, M. ‘Classification performance assessment for imbalanced multiclass data’. Scientific Reports 14, 10759 (2024).
Últimas publicaciones
Nos encontramos a menos de un día del solsticio de diciembre, que tendrá lugar a las 10:20 de este sábado, hora española. Esta efeméride marca el comienzo de las estación astronómicas de invierno para el hemisferio norte. Dejamos atrás el otoño, con sus tonalidades amarillas, naranjas y marrones, y damos paso al color blanco de los copos de nieve, a las luces de colores, y a las flores de pascua. Son algunos de los protagonistas de estas fiestas, que también tienen su ciencia. Por ello os proponemos descubrir diferentes curiosidades científicas relacionadas con la Navidad. ¿Sabías que el espumillón comenzó a fabricarse de aluminio y plomo y con el paso del tiempo ha variado su composición para hacerse ahora de PVC? ¿Te has preguntado alguna vez por qué las típicas flores de esta época del año son esas y no otras? ¿ O cuánto consumen las luces led del árbol que adornas cada año?
Sigue leyendoEl consejero de Universidad, Investigación e Innovación, José Carlos Gómez Villamandos, ha presidido el Patronato celebrado en Sevilla. El Plan prevé el fomento además de la divulgación en el ámbito de la emergencia, la seguridad y la defensa, al tiempo que comenzarán los trabajos para la divulgación del trío de eclipses solares previstos en la Península para 2026, 2027 y 2028. La Fundación ha celebrado previamente el acto de reconocimiento de las personas y entidades Colaboradoras Extraordinarias de Descubre.
Durante doce días, y con la financiación de la Embajada de España en Mauritania, Álvaro Martínez Sevilla, director científico del proyecto Paseos Matemáticos, en colaboración con el profesor del Departamento de Lenguaje y Sistemas Informáticos de la Universidad de Granada Sergio Alonso, han recorrido las principales localidades que forman esta ruta para recabar información que les permita realizar un estudio matemático geométrico de la arquitectura y decoración local. Con todo el material recopilado, elaborarán la nueva exposición ‘Paseos Matemáticos Al Ándalus y la ruta de las caravanas’ que se inaugurará en 2025 en la capital mauritana y recorrerá también varias ciudades andaluzas.
Sigue leyendo