VOLVER

Share

Descubierto un mecanismo clave para la resistencia a salinidad en cultivos sensibles al cloruro

Fuente: CSIC


08 de julio de 2016
Imagen al microscopio de las raíces de la planta modelo Arabidopsis thaliana

Imagen al microscopio de las raíces de la planta modelo Arabidopsis thaliana

Un estudio internacional realizado por el Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad de Würzburg (Alemania) ha identificado un mecanismo genético que permite a las plantas modular la tasa óptima de transporte de Nitrato y Cloruro desde la raíz a la parte aérea en función de las condiciones medioambientales. Los resultados del trabajo, publicados en la revista Current Biology, podrían aplicarse en el desarrollo de cultivos resistentes a la salinidad.

“En condiciones de crecimiento activo y en ausencia de perturbaciones medioambientales, como la sequía y la salinidad, el mecanismo de transporte descrito media el paso de ambos nutrientes, nitrato y cloruro, desde la raíz hacia las hojas. El Nitrato es la principal fuente de nitrógeno mientras que el cloruro desempeña un papel clave en la regulación del equilibrio hídrico de las plantas. Cuando la planta se ve sometida a situaciones de estrés, el mismo mecanismo reduce drásticamente el paso cloruro sin alterar el paso nitrato, permitiendo la retención selectiva de cloruro en la raíz”, explica el investigador del CSIC José Manuel Colmenero, del Instituto de Recursos Naturales y Agrobiología de Sevilla.

Sequía y salinidad

En condiciones de sequía, la retención de cloruro permite a la raíz mantener su crecimiento y facilitar la captación de agua presente en capas más profundas del suelo. Si el estrés viene provocado por la salinidad, la retención de cloruro en la raíz reduce la intoxicación de las hojas por el exceso de sales.

Cítricos y vides

“Los cítricos y las vides son cultivos de gran importania económica en nuestro país pero especialmente sensibles a la salinidad ya que no regulan adecuadamente la acumulación de cloruro en las hojas. La aplicación biotecnológica de estos resultados en portainjertos de cítricos y de vid permitiría obtener cultivos más resistentes a la salinidad, y ayudaría a resolver un problema muy común en la región mediterránea.”, añade el investigador.

Paloma Cubero-Font, Tobias Maierhofer, Justyna Jaslan, Miguel A. Rosales, Joaquín Espartero, Pablo Díaz-Rueda, Heike M. Müller, Anna-Lena Hürter, Khaled A.S. AL-Rasheid, Irene Marten, Rainer Hedrich, José M. Colmenero-Flores, Dietmar Geiger. Silent S-Type Anion Channel Subunit SLAH1 Gates SLAH3 Open for Chloride Root-to-Shoot Translocation. Current Biology. DOI: 10.1016/j.cub.2016.06.045


Share

Últimas publicaciones

La Fundación Descubre propone en FITUR unir ciencia y turismo para crear experiencias turísticas únicas
Madrid | 28 de enero de 2026

La institución promovida por la Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía ofrece la red de 127 promotores del Registro Nacional de Turismo Científico para diseñar una oferta que aúne la ciencia y el turismo. La directora de Descubre, Teresa Cruz, recibe la Medalla del Conocimiento Turístico en la Presentación de la Edición Especial NEXOTUR de 2026.

Sigue leyendo
Estudian las dianas cerebrales de sustancias químicas que actúan como mensajeros en el cerebro
Sevilla | 27 de enero de 2026

Los investigadores del Laboratorio de Neurociencia Celular y Plasticidad de la Universidad Pablo de Olavide, Antonio Rodríguez-Moreno y Rafael Falcón-Moya, han participado en un estudio internacional sobre las dianas cerebrales de distintos endocannabinoides, que actúan específicamente sobre células diferentes (neuronas o astrocitos) y que ha sido publicado en la revista Nature Neuroscience.

Sigue leyendo
Desarrollan una metodología que acelera y personaliza el montaje de nanomateriales
Granada | 26 de enero de 2026

Investigadores de la Universidad de Granada han desarrollado una metodología pionera para fabricar materiales funcionales avanzados a una velocidad sin precedentes. Esta estrategia supera barreras actuales en el ensamblado de nanomateriales: la lentitud y los defectos que surgen cuando las partículas se agrupan de forma espontánea. El nuevo método no requiere moldes físicos ni recipientes especiales, lo que supone una ventaja para la fabricación de materiales avanzados y reconfigurables para aplicaciones industriales.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido