Descubierto un mecanismo que explica el movimiento inestable de las burbujas que se elevan en el agua
El profesor de la Universidad de Sevilla Miguel Ángel Herrada, en colaboración con Jens G. Eggers, profesor de la Universidad de Bristol, ha descubierto un mecanismo que explica el movimiento inestable de las burbujas que se elevan en el agua. Según los investigadores, los resultados, publicados en la prestigiosa revista PNAS, pueden ser útiles para comprender el movimiento de partículas cuyo comportamiento es intermedio entre un sólido y un gas.
Fuente: Universidad de Sevilla
El profesor de la Universidad de Sevilla Miguel Ángel Herrada, en colaboración con Jens G. Eggers, profesor de la Universidad de Bristol, ha descubierto un mecanismo que explica el movimiento inestable de las burbujas que se elevan en el agua. Según los investigadores, los resultados, publicados en la prestigiosa revista PNAS, pueden ser útiles para comprender el movimiento de partículas cuyo comportamiento es intermedio entre un sólido y un gas.
Leonardo da Vinci observó ya hace cinco siglos que las burbujas de aire, si son suficientemente grandes, se desvían periódicamente, en zigzag o en espiral, del movimiento en línea recta. Sin embargo, aún no se había encontrado una descripción cuantitativa del fenómeno ni un mecanismo físico que explicara este movimiento periódico.
Los autores de este nuevo estudio han desarrollado una técnica de discretización numérica para caracterizar con precisión la interfaz aire-agua de la burbuja, lo que permite simular su movimiento y estudiar su estabilidad. Sus simulaciones concuerdan bien con mediciones de alta precisión del movimiento inestable de las burbujas e indican que éstas se desvían de la trayectoria recta en el agua si su radio esférico supera los 0,926 milímetros, un resultado dentro del 2% de los valores experimentales obtenidos con agua ultrapura en los años noventa.
Los investigadores proponen un mecanismo para la inestabilidad de la trayectoria de la burbuja en el que una inclinación periódica de ésta cambia la curvatura, lo que afecta a la velocidad de ascenso y provoca un bamboleo en la trayectoria de la burbuja, inclinando hacia arriba el lado de la burbuja cuya curvatura ha crecido. A continuación, a medida que el fluido se mueve más deprisa y la presión del fluido desciende alrededor de la superficie de alta curvatura, el desequilibrio de presión devuelve la burbuja a su posición original, reiniciando el ciclo periódico.
Referencia bibliográfica:
Path instability of an air bubble rising in water; Miguel A. Herradaa, Jens G. Eggers; PNAS 2023 Vol. 120 Nº 0; DOI: 10.1073/pnas.2216830120
Últimas publicaciones
Un equipo de investigación de la Estación Experimental del Zaidín (CSIC-Granada) ha analizado las propiedades nutricionales de este subproducto de la industria quesera que normalmente se desecha. Los resultados confirman que se trata de una propuesta rica en compuestos beneficiosos para el organismo que además reduce la oxidación celular y ayuda a prevenir enfermedades degenerativas como la hipertensión arterial, artritis o distrofia muscular.
Sigue leyendoDurante este encuentro celebrado en la Universidad de Granada se pusieron en común los últimos avances hallados sobre la gestión de la docencia y la investigación durante la pandemia de COVID-19 y se intercambiaron los resultados de las experiencias generadas, por cada equipo de investigación, tras el análisis de los comportamientos y estados emocionales medidos en la ciudadanía ante la interacción con los entornos construidos en el confinamiento.
Sigue leyendoLa laguna de Santa Olalla se secó a finales de agosto del año pasado y está considerada una laguna de carácter permanente que no había sufrido una desecación tan intensa ni con ocasión de los periodos de sequía anteriores. Las cifras de aves acuáticas invernantes constituyeron el segundo valor más bajo de la serie histórica. Además, la temporada de reproducción de estas aves acuáticas de Doñana fue también mala debido a la sequía.