VOLVER

Share

La UCO participa en un proyecto para desarrollar una IA más clara en la predicción en energías renovables y salud

El proyecto NEXO, en el que también participa un grupo de investigación de la Universidad de Alcalá, utiliza aprendizaje automático y redes neuronales artificiales para desarrollar algoritmos aplicables en medicina, meteorología y energía. En concreto, se centra en la predicción de disponibilidad de recursos energéticos, de condiciones meteorológicas y de la probabilidad de supervivencia en donación de órganos y en lista de espera para trasplante.

Fuente: Universidad de Córdoba


Córdoba |
16 de junio de 2025

El proyecto de investigación NEXO, en el que colaboran los grupos AYRNA de la Universidad de Córdoba y GHEODE de la Universidad de Alcalá, busca desarrollar una Inteligencia Artificial (IA) más interpretable y comprensible para las personas expertas y que al mismo tiempo ayude en la resolución de problemas del mundo real. En concreto, se centra en la predicción de disponibilidad de recursos energéticos, de condiciones meteorológicas y de la probabilidad de supervivencia en donación de órganos y en lista de espera para trasplante.

El equipo investigador del proyecto NEXO.

En estos tres campos de la medicina, la meteorología y la energía es importante comprender cómo se llega a determinadas decisiones, por lo que el proyecto busca desarrollar lo que se conoce como Inteligencia Artificial Explicable. Esta técnica tiene por objetivo desarrollar modelos precisos, pero al mismo tiempo acompañados de explicaciones claras e interpretables acerca de cómo estos modelos obtienen los resultados para los que fueron desarrollados, dejando a un lado las denominadas “cajas negras” de la IA, esto es, el desconocimiento de como un modelo realiza una determinada predicción.

A través del aprendizaje automático, en el que el propio sistema computacional aprende mediante un entrenamiento previo, el equipo trabajará hasta 2027 con modelos de redes neuronales artificiales, un tipo de modelo que se inspira en la forma en que interactúan y se organizan las neuronas de nuestro cerebro, y con clasificación ordinal, la cual permite abordar problemas cuyas clases a predecir presentan un orden natural.

Así, el equipo del proyecto NEXO empleará el aprendizaje automático y las redes neuronales artificiales para desarrollar modelos de clasificación ordinal que sean explicables y transparentes, y, en línea con proyectos anteriores (como ORCA-DEEP o Hamlet), ayudar a realizar mejores predicciones en tres áreas. La primera de ellas es la energía renovable, clave en los próximos años para abandonar el uso de los combustibles fósiles, pero que cuenta con la desventaja de ser irregular ya que no siempre hace sol o no siempre sopla el viento. La aplicación de los modelos desarrollados permitirá la predicción de la disponibilidad de energía eólica, solar, undimotriz o de olas.

Relacionado con las energías renovables se encuentra la segunda de las aplicaciones: la climatología. Se busca conocer no solo la posibilidad de que ocurran eventos climáticos extremos como olas de calor o sequías, sino también la influencia que estos pueden tener en las energías verdes ya que, por ejemplo, una velocidad de viento extrema puede romper las turbinas eólicas o una velocidad de viento baja puede hacer innecesario activarlas.

Por último, el proyecto NEXO aplicará las redes neuronales artificiales en el área/ámbito del trasplante de hígado, tanto para estimar la probabilidad de supervivencia del órgano en el emparejamiento entre donante-receptor, como para evitar el sesgo de género en las listas de espera de los receptores, y en el/la cual ya están trabajando con el sistema de priorización GEMA.

Referencia:

PID2023-150663NB-C22. Título: “Nuevos modelos EXplicables en clasificación Ordinal (NEXO): aplicaciones a energías renovables y biomedicina”. Entidad financiadora: MCIU. Investigadores principales: P.A. Gutiérrez y J.C. Fernández (UCO). Fechas: 01/09/2024-31/08/2027. Financiación: 137.700€.


Share

Últimas publicaciones

Investigan cómo transformar residuos para elaborar productos dedicados al bienestar de la mujer
Sevilla | 15 de enero de 2026

La investigación transformará residuos de origen animal en quitosano, para el desarrollo de productos cosméticos y funcionales orientados al bienestar de la mujer en etapas como la menopausia. La investigación combina tecnologías avanzadas de formulación con un enfoque multidisciplinar que integra conocimientos en química, ingeniería, ciencia de los alimentos y ciencia de materiales. El objetivo final es desarrollar formulaciones innovadoras con potencial de transferencia a la industria cosmética y alimentaria.

Sigue leyendo
Demuestra la eficacia de un medicamento común en el control de personas con asma grave
Málaga | 15 de enero de 2026

Un estudio internacional liderado desde Málaga abre nuevas posibles vías de tratamiento para las personas con asma. Así, investigadores de la Universidad de Málaga, de IBIMA Plataforma BIONAND y del Hospital Regional Universitario de Málaga han coordinado una publicación clave de la Academia Europea de Alergia e Inmunología Clínica (EAACI) que cambia la forma de entender y tratar esta enfermedad respiratoria que afecta a millones de personas en todo el mundo.

Sigue leyendo
Publican la posible ubicación de Madinat al Zāhira en el extremo este de Córdoba
Córdoba | 14 de enero de 2026

El investigador de la Universidad de Córdoba, Antonio Monterroso Checa, ha identificado este yacimiento en la zona relacionada con los cabezos de las Pendolillas, cuyo nombre se conoce desde el siglo XV. Este lugar ha sido desde esa fecha una zona de dehesa ligada al Realengo y sede de las Yeguadas Reales desde tiempos de Felipe II, al igual que sucedió con la ciudad de Abderramán III. Se trata de las dos únicas zonas de Dehesas Reales en Córdoba.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido