La Universidad de Sevilla participa en un proyecto para el control de la autenticidad y la calidad de los aceites de oliva
El Servicio de Resonancia Magnética Nuclear del Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS) participa en un proyecto para el desarrollo de una aplicación que analice la autenticidad y calidad de aceites de oliva. El resultado es un sistema que, estadísticamente, permite obtener un grado de concordancia con el país de origen, el grado de calidad así como detectar perfiles atípicos de aceites de oliva.
Fuente: Universidad de Sevilla
El aceite de oliva es un alimento indispensable para la dieta mediterránea, siendo una fuente importante de numerosos componentes bioactivos: triglicéridos, ácidos grasos mono- y poliinsaturados, antioxidantes, vitaminas, minerales, etc. Los niveles de dichos componentes dependen de numerosos factores como son la variedad, la edad de los olivos, los procesos de producción, el tipo de suelo, el clima, el almacenaje, etc. Todos estos factores redundan en una mayor o menor calidad del aceite, siendo ‘virgen extra’ la categoría de máxima calidad y de mayor valor comercial.
A pesar de su valor, el aceite de oliva sigue siendo uno de los alimentos más adulterados. Las prácticas más habituales son la mezcla con otros aceites de menor calidad o procedentes de otras fuentes (como el de girasol, por ejemplo) o el etiquetado fraudulento tanto respecto a su calidad como a su origen.
En esta línea, el Servicio de Resonancia Magnética Nuclear (RMN) del Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS) participa en un proyecto liderado por Bruker BioSpin para el desarrollo de una aplicación para el análisis de la autenticidad y calidad de aceites de oliva. Este proyecto se basa en la adquisición de una gran base de datos de varios miles de espectros de 1H-RMN de aceites de oliva autentificados de manera independiente en laboratorios especializados. Los parámetros analíticos de dichos aceites (p. ej. acidez, contenido en ácido oleico, polifenoles, etc.) así como los de calidad y origen geográfico se asocian a sus perfiles de 1H-RMN usando varias técnicas de Machine Learning.
El resultado es un sistema que, estadísticamente, permite obtener un grado de concordancia con el país de origen (Grecia, Italia o España) y el grado de calidad (virgen extra), detectar perfiles atípicos de aceites de oliva y, además, cuantificar de 15 a 20 parámetros analíticos en pocos minutos y usando menos de medio mililitro de muestra.
Más información en: Newfoodmagazine
Últimas publicaciones
Talleres, rutas, jornadas y exposiciones organizados por 185 instituciones en las 8 provincias han conformado la oferta de esta edición, en la que han participado 28.062 personas.
Sigue leyendoUn equipo de investigación de la Universidad de Málaga ha verificado el uso conjunto de tres cepas de Pseudomonas, un tipo de microorganismo, para que la planta no sufra con la subida del nivel térmico que conlleva el aumento de temperatura ambiental. Los expertos ponen a disposición de los agricultores una herramienta que lucha contra patógenos, al mismo tiempo que protege contra el calor.
El Ayuntamiento de Sevilla ha acogido el II Consejo de alcaldes de la Comunidad de Ciudades Ariane (CVA), un evento clave para la cooperación entre ciudades en el ámbito espacial europeo y que ha servido para hacer entrega del testigo de la presidencia a Fabian Jordan, presidente de Mulhouse Alsace Agglomération y encargado de ejercer la Presidencia de Ciudades Ariane en 2025.
Sigue leyendo