La Universidad de Sevilla participa en un proyecto para el control de la autenticidad y la calidad de los aceites de oliva
El Servicio de Resonancia Magnética Nuclear del Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS) participa en un proyecto para el desarrollo de una aplicación que analice la autenticidad y calidad de aceites de oliva. El resultado es un sistema que, estadísticamente, permite obtener un grado de concordancia con el país de origen, el grado de calidad así como detectar perfiles atípicos de aceites de oliva.
Fuente: Universidad de Sevilla
El aceite de oliva es un alimento indispensable para la dieta mediterránea, siendo una fuente importante de numerosos componentes bioactivos: triglicéridos, ácidos grasos mono- y poliinsaturados, antioxidantes, vitaminas, minerales, etc. Los niveles de dichos componentes dependen de numerosos factores como son la variedad, la edad de los olivos, los procesos de producción, el tipo de suelo, el clima, el almacenaje, etc. Todos estos factores redundan en una mayor o menor calidad del aceite, siendo ‘virgen extra’ la categoría de máxima calidad y de mayor valor comercial.
A pesar de su valor, el aceite de oliva sigue siendo uno de los alimentos más adulterados. Las prácticas más habituales son la mezcla con otros aceites de menor calidad o procedentes de otras fuentes (como el de girasol, por ejemplo) o el etiquetado fraudulento tanto respecto a su calidad como a su origen.
En esta línea, el Servicio de Resonancia Magnética Nuclear (RMN) del Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS) participa en un proyecto liderado por Bruker BioSpin para el desarrollo de una aplicación para el análisis de la autenticidad y calidad de aceites de oliva. Este proyecto se basa en la adquisición de una gran base de datos de varios miles de espectros de 1H-RMN de aceites de oliva autentificados de manera independiente en laboratorios especializados. Los parámetros analíticos de dichos aceites (p. ej. acidez, contenido en ácido oleico, polifenoles, etc.) así como los de calidad y origen geográfico se asocian a sus perfiles de 1H-RMN usando varias técnicas de Machine Learning.
El resultado es un sistema que, estadísticamente, permite obtener un grado de concordancia con el país de origen (Grecia, Italia o España) y el grado de calidad (virgen extra), detectar perfiles atípicos de aceites de oliva y, además, cuantificar de 15 a 20 parámetros analíticos en pocos minutos y usando menos de medio mililitro de muestra.
Más información en: Newfoodmagazine
Últimas publicaciones
Esta es una de las conclusiones del estudio que ha realizado un equipo de científicos de la Universidad de Granada con ratones de laboratorio y que ha detectado también el impacto de estos químicos en la proliferación de la obesidad infantil.
Sigue leyendoUn equipo de investigación andaluz junto con expertos de Reino Unido comprueba que el contenido en compuestos antioxidantes de estos organismos marinos mitiga la emisión de metano hasta un 40%, en una digestión simulada en rumiantes.
Sigue leyendoUn equipo de investigación del Instituto de Agricultura Sostenible de Córdoba (IAS-CSIC) ha analizado más de un centenar de muestras de quinoa cultivada en Andalucía y Extremadura durante dos años. El estudio ha demostrado que tanto el contenido de antioxidantes como grasas saludables depende en gran medida de la genética de la planta, lo que permitirá seleccionar aquellas variedades con mayor valor nutricional que mejor se adapten al clima del sur de España.