La Universidad de Sevilla participa en un proyecto para el control de la autenticidad y la calidad de los aceites de oliva
El Servicio de Resonancia Magnética Nuclear del Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS) participa en un proyecto para el desarrollo de una aplicación que analice la autenticidad y calidad de aceites de oliva. El resultado es un sistema que, estadísticamente, permite obtener un grado de concordancia con el país de origen, el grado de calidad así como detectar perfiles atípicos de aceites de oliva.
Fuente: Universidad de Sevilla
El aceite de oliva es un alimento indispensable para la dieta mediterránea, siendo una fuente importante de numerosos componentes bioactivos: triglicéridos, ácidos grasos mono- y poliinsaturados, antioxidantes, vitaminas, minerales, etc. Los niveles de dichos componentes dependen de numerosos factores como son la variedad, la edad de los olivos, los procesos de producción, el tipo de suelo, el clima, el almacenaje, etc. Todos estos factores redundan en una mayor o menor calidad del aceite, siendo ‘virgen extra’ la categoría de máxima calidad y de mayor valor comercial.
A pesar de su valor, el aceite de oliva sigue siendo uno de los alimentos más adulterados. Las prácticas más habituales son la mezcla con otros aceites de menor calidad o procedentes de otras fuentes (como el de girasol, por ejemplo) o el etiquetado fraudulento tanto respecto a su calidad como a su origen.
En esta línea, el Servicio de Resonancia Magnética Nuclear (RMN) del Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS) participa en un proyecto liderado por Bruker BioSpin para el desarrollo de una aplicación para el análisis de la autenticidad y calidad de aceites de oliva. Este proyecto se basa en la adquisición de una gran base de datos de varios miles de espectros de 1H-RMN de aceites de oliva autentificados de manera independiente en laboratorios especializados. Los parámetros analíticos de dichos aceites (p. ej. acidez, contenido en ácido oleico, polifenoles, etc.) así como los de calidad y origen geográfico se asocian a sus perfiles de 1H-RMN usando varias técnicas de Machine Learning.
El resultado es un sistema que, estadísticamente, permite obtener un grado de concordancia con el país de origen (Grecia, Italia o España) y el grado de calidad (virgen extra), detectar perfiles atípicos de aceites de oliva y, además, cuantificar de 15 a 20 parámetros analíticos en pocos minutos y usando menos de medio mililitro de muestra.
Más información en: Newfoodmagazine
Últimas publicaciones
Los resultados de este estudio llevado a cabo en la Bahía de Cádiz muestran que los yacimientos ubicados en los afloramientos rocosos y las zonas costeras poco profundas son especialmente vulnerables. La metodología desarrollada permite identificar áreas de mayor riesgo y evaluar la preservación del patrimonio cultural subacuático bajo futuras condiciones climáticas, ofreciendo una herramienta eficaz para discriminar yacimientos en riesgo.
Sigue leyendoUn equipo de la Universidad de Córdoba aplica la técnica de edición genómica ganadora del Nobel de Química en 2020 para desentrañar las funciones de dos genes implicados en el metabolismo de la judía y que no habían podido caracterizarse con otras metodologías.
Sigue leyendoEsta línea de investigación agroecológica puesta en marcha en el centro Ifapa de La Mojonera ha demostrado el papel de los vertebrados aéreos insectívoros en el control de plagas tan importantes para la horticultura como la polilla del tomate o Tuta absoluta. Se busca valorar el beneficio que los reptiles ofrecen a los agricultores así como su papel en el equilibrio del ecosistema.
Sigue leyendo