VOLVER

Share

La Universidad de Sevilla participa en un proyecto para el control de la autenticidad y la calidad de los aceites de oliva

El Servicio de Resonancia Magnética Nuclear del Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS) participa en un proyecto para el desarrollo de una aplicación que analice la autenticidad y calidad de aceites de oliva. El resultado es un sistema que, estadísticamente, permite obtener un grado de concordancia con el país de origen, el grado de calidad así como detectar perfiles atípicos de aceites de oliva.

Fuente: Universidad de Sevilla


Sevilla |
27 de octubre de 2023

El aceite de oliva es un alimento indispensable para la dieta mediterránea, siendo una fuente importante de numerosos componentes bioactivos: triglicéridos, ácidos grasos mono- y poliinsaturados, antioxidantes, vitaminas, minerales, etc. Los niveles de dichos componentes dependen de numerosos factores como son la variedad, la edad de los olivos, los procesos de producción, el tipo de suelo, el clima, el almacenaje, etc. Todos estos factores redundan en una mayor o menor calidad del aceite, siendo ‘virgen extra’ la categoría de máxima calidad y de mayor valor comercial.

A pesar de su valor, el aceite de oliva sigue siendo uno de los alimentos más adulterados. Las prácticas más habituales son la mezcla con otros aceites de menor calidad o procedentes de otras fuentes (como el de girasol, por ejemplo) o el etiquetado fraudulento tanto respecto a su calidad como a su origen.

A pesar de su valor, el aceite de oliva sigue siendo uno de los alimentos más adulterados.

En esta línea, el Servicio de Resonancia Magnética Nuclear (RMN) del Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS) participa en un proyecto liderado por Bruker BioSpin para el desarrollo de una aplicación para el análisis de la autenticidad y calidad de aceites de oliva. Este proyecto se basa en la adquisición de una gran base de datos de varios miles de espectros de 1H-RMN de aceites de oliva autentificados de manera independiente en laboratorios especializados. Los parámetros analíticos de dichos aceites (p. ej. acidez, contenido en ácido oleico, polifenoles, etc.) así como los de calidad y origen geográfico se asocian a sus perfiles de 1H-RMN usando varias técnicas de Machine Learning.

El resultado es un sistema que, estadísticamente, permite obtener un grado de concordancia con el país de origen (Grecia, Italia o España) y el grado de calidad (virgen extra), detectar perfiles atípicos de aceites de oliva y, además, cuantificar de 15 a 20 parámetros analíticos en pocos minutos y usando menos de medio mililitro de muestra.

Más información en: Newfoodmagazine


Share

Últimas publicaciones

Identifican las áreas cerebrales que se activan para detectar la desinformación
Jaén | 15 de octubre de 2025

Un equipo de investigación de la Universidad de Jaén halla, mediante encefalograma, que las regiones del cerebro relacionadas con el aprendizaje y la memoria, así como la vinculada a la toma de decisiones se ‘despiertan’ al visionar una campaña institucional sobre información maliciosa. Esta acción informativa actúa como una ‘vacuna’ que alerta a los usuarios de que apliquen sus ‘defensas cognitivas’ para analizar los mensajes de forma crítica. Así se reduce la tendencia a compartir y creer en elementos de las redes sociales.

Sigue leyendo
Un equipo de investigadores identifican una enzima clave en la Atrofia Muscular Espinal
Sevilla | 14 de octubre de 2025

Un estudio interdisciplinar de la Universidad Pablo de Olavide y la Universidad de Lleida avanza en el conocimiento de la Atrofia Muscular Espinal (AME), considerada como una enfermedad rara que afecta a uno de cada ocho mil nacimientos y que tiene la tasa de mortalidad más alta de todas las enfermedades hereditarias. El equipo de investigación ha propuesto un fármaco ya existente como terapia.

Sigue leyendo
Validan dos metodologías de Inteligencia Artificial para mejorar la predicción de la velocidad del viento en parques eólicos
Córdoba | 14 de octubre de 2025

Un equipo de investigación de la UCO pone a prueba dos metodologías entrenadas con más de 13 años de datos, capaces de predecir las velocidades del viento extremas con mayor precisión que otros métodos tradicionales, lo que podría ayudar a mejorar la gestión de los aerogeneradores en centrales eólicas.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido