VOLVER

Share

LUZ PARA PROVOCAR LA RUPTURA DEL HIDRÓGENO


09 de diciembre de 2010

Fuente: AndaluciaInvestiga.com – Amalia Rodríguez Gómez

 

Científicos de la Universidad de Cádiz (UCA) aplicarán energía luminosa para intentar separar los dos átomos de hidrógeno que forman la molécula de dihidrógeno. De esta forma, conseguirían manipular una de la más pequeñas y al mismo tiempo una de las moléculas más importantes utilizadas en Química.

 

El equipo del profesor garcía Basallote desarrolla el proyecto de excelenciaLa molécula de hidrógeno (H2, dihidrógeno), es una de las más pequeñas que se utilizan en Química. Sin embargo, su minúsculo tamaño es inversamente proporcional a su importancia, ya que son múltiples sus aplicaciones en laboratorio e industriales, sobre todo en los sectores químicos y petroquímicos: como portador de energía, para refinar combustibles fósiles, etc. Este gas, que a temperatura ambiente es incoloro, inodoro y altamente inflamable, entraña además una dificultad debido a que su aprovechamiento está muy condicionado por la fuerte unión que existe entre los dos átomos de hidrógeno que forman esta molécula.

Para poder trabajar con esta molécula, controlando su reactividad, primero hay que romper este “fuerte” enlace, un reto en el que investigadores del Departamento de Química de la Universidad de Cádiz, coordinados por el catedrático Manuel García Basallote, están trabajando desde hace dos años.

En concreto, estos expertos en Química han optado por emplear luz como fuente de energía para activar el proceso de transferencia protónica, de manera que los dos átomos que forman la molécula se separan como dos fragmentos cargados, uno positivamente (el protón) y otro negativamente (hidruro). Ésta es la novedad de este trabajo científico, que se enmarca en el proyecto de excelencia titulado Generación fotoquímica de protones y activación de hidrógeno e incentivado por la Consejería de Economía, Innovación y Ciencia con 334.065 euros.

“La utilización de la energía luminosa para la realización de procesos físicos o químicos útiles es una contribución significativa para reducir los problemas medioambientales asociados a la utilización de otras fuentes energéticas. Y el hidrógeno es otra de las alternativas más prometedoras desde el punto de vista energético y medioambiental, tanto como medio eficiente y limpio de almacenamiento de la energía como para la realización de reacciones de interés en la industria química. Por lo tanto, a pesar del carácter de investigación básica del proyecto, pretendemos abrir nuevas vías de estudio que ayuden a resolver algunos de los problemas más importantes que afronta la sociedad actual”, subraya Manuel García Basallote.

Sensible a la luz

En este proyecto, los científicos de la UCA han sometido a diferentes compuestos -todos ellos conteniendo metales como hierro y rutenio-, a los efectos de la luz durante un periodo de tiempo ínfimo, equivalente a unos 5 nanosegundos. Estos experimentos permiten a los investigadores ver la respuesta de la molécula ante esta situación, es decir, examinar qué transformaciones se se producen en el hidrógeno y el resto de la molécula tras su exposición a la luz.

Científicos del equipo de la UCA en el laboratorio“Hemos empleado un láser de luz que permite cambiar su longitud de onda, de manera que puedan estudiarse las transformaciones que sufren el dihidrógeno y el resto del compuesto en función del color de la luz empleada. Una vez sepamos cómo reacciona el hidrógeno, podrá sustituirse la luz artificial por energía solar y comprobarse su respuesta”, señala García Basallote.

Mientras tanto, y tras realizar experimentos en el laboratorio, los investigadores de la UCA han comprobado que la molécula de hidrógeno unida a esos metales es menos sensible a la luz de lo que cabría esperarse. “Este hallazgo es muy relevante desde el punto de vista de la química de estos compuestos y abre nuevas vías de estudio”.

Según el responsable de este estudio, “parece que existen otras partes de las moléculas donde pueden acumularse electrones tras la excitación luminosa o producirse otras transformaciones químicas, impidiendo así las transformaciones sobre el hidrógeno. Modificando esas otras partes de la molécula se podrían bloquear esos otros procesos y conseguir la reacción que buscamos”.

 

 

 

Descargue las imágenes de la noticia:

 

El equipo del profesor garcía Basallote desarrolla el proyecto de excelencia

 

Científicos del equipo de la UCA en el laboratorio

Más información:

Manuel García Basallote, responsable del proyecto de excelencia
Teléfono: (+34) 956 01 63 03
E-mail: manuel.basallote@uca.es


Share

Últimas publicaciones

Científicos ciudadanos desarrollarán una plataforma de prevención de noticias falsas
Andalucía | 29 de mayo de 2024

Investigadores de la Universidad de Sevilla y la empresa Civiencia lideran ‘De pantallas a ventanas: un proyecto contra la desinformación digital’ donde están elaborando una guía basada en las aportaciones de grupos vecinales y estudiantes universitarios para que la ciudadanía cuente con pautas claras y sencillas para que actúe frente a los bulos. Esta iniciativa forma parte del proyecto ‘Andalucía + ciencia ciudadana’, impulsado por la Consejería de Universidad, Investigación e Innovación y coordinado por Fundación Descubre y la Universidad Pablo de Olavide, que pretende potenciar la utilización de este abordaje científico participativo entre distintos agentes de la región.

Sigue leyendo
Aplican la ciencia ciudadana para reducir el tiempo de uso del móvil en jóvenes andaluces
Sevilla | 28 de mayo de 2024

Investigadores de las Universidades de Sevilla, Jaén y Cádiz participan en el proyecto ‘Desconéctate para Conectar: Fomentando un Estilo de Vida Activo y Saludable entre los Jóvenes Andaluces’ que buscará estrategias concretas para incentivar a estudiantes de secundaria, bachillerato y universidad a que cambien sus hábitos de uso de dispositivos móviles por actividades físicas.

Sigue leyendo
Descubren un nuevo gen que hace resistente al girasol contra la planta parásita jopo
Córdoba | 27 de mayo de 2024

Un equipo de investigación del Instituto de Agricultura Sostenible (IAS-CSIC) ha descrito una pieza del ADN que impide que las raíces de este cultivo sean infectadas por uno de sus patógenos más letales, el jopo. Además de determinar su posible función y la localización en su genoma, ha demostrado la posibilidad de transferirlo como mecanismo natural de defensa desde una especie silvestre a otras variedades de siembra.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido