VOLVER

Share

‘Machine learning’ para predecir el comportamiento de componentes electrónicos no testeados

La herramienta que se desarrolle en este proyecto del Centro Nacional de Aceleradores permitirá predecir el comportamiento, por lo que tiene una aplicación directa en proyectos espaciales y de entornos hostiles. Esta permitirá al usuario conocer en la fase de diseño si un componente es adecuado para su instrumento, ahorrando así costes de ejecución de ensayos y tiempo.

Fuente: Universidad de Sevilla


Sevilla |
18 de marzo de 2021

El Centro Nacional de Aceleradores (CNA) y Alter Technology, que actúa como Agente Agregado, lideran el proyecto de Predicción del Comportamiento Eléctrico de Dispositivos Electrónicos bajo Radiación (PRECEDER). Se trata de un subproyecto de transferencia del conocimiento, basado en la inteligencia artificial, cuyo objetivo es preparar una amplia base de datos y desarrollar técnicas de Aprendizaje Automático (‘Machine learning’) sobre un conjunto de resultados, que permitan predecir el comportamiento de otros componentes electrónicos no testeados en base a la experiencia.

El CNA, centro mixto de la Universidad de Sevilla, la Junta de Andalucía y el CSIC, es un referente para los ensayos de irradiación y la empresa Alter es experta en la irradiación de dispositivos electrónicos para el sector espacial. La evaluación del comportamiento frente a la radiación es esencial para el diseño y montaje de satélites, sondas, robots, etc.

La herramienta que se desarrolle en este proyecto permitirá predecir el comportamiento, por lo que tiene una aplicación directa en proyectos espaciales y de entornos hostiles. Esta permitirá al usuario conocer en la fase de diseño si un componente es adecuado para su instrumento, ahorrando así costes de ejecución de ensayos y tiempo.

PRECEDER se enmarca en el Proyecto Ecosistema Innovador con Inteligencia Artificial para Andalucía 2025 liderado por el Campus de Excelencia Internacional Andalucía TECH para que la Universidad de Sevilla y la Universidad de Málaga actúen con empresas tecnológicas tractoras para el desarrollo de tecnologías de inteligencia artificial en todos los ámbitos de la Estrategia de Especialización Inteligente (RIS3) en Andalucía. Cuarenta y nueve subproyectos de transferencia del conocimiento se engloban dentro de esta iniciativa financiada por la Junta de Andalucía, a través de la Dirección General de Investigación y Transferencia del Conocimiento de la Consejería de Transformación económica, Industria, Conocimiento y Universidades, enmarcada en el Programa Operativo FEDER.


Share

Últimas publicaciones

La Fundación Descubre integra la igualdad como eje transversal con la aprobación de su Plan
Andalucía | 15 de septiembre de 2025

El objetivo del Plan, con una vigencia de cinco años, es garantizar la plena igualdad de trato y oportunidades de mujeres y hombres, consolidando un camino ya emprendido por la organización, promovida por la Consejería de Universidad, Investigación e Innovación

Sigue leyendo
La exposición ‘Paseo Matemático al-Ándalus’ de la Fundación Descubre llega a Palma del Río
Córdoba, Palma del Río | 11 de septiembre de 2025

El Espacio Creativo Cultural Santa Clara del Ayuntamiento de Palma del Río acoge la exposición ‘Paseo Matemático al-Ándalus’ de la Fundación Descubre / Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía, una muestra que podrá visitarse hasta el próximo 14 de octubre.

Sigue leyendo
Desarrollan un método para descifrar cómo interactúan las regiones del cerebro
Málaga | 10 de septiembre de 2025

Un equipo de investigación de la Universidad de Málaga presenta una herramienta estadística para identificar de forma precisa conexiones cerebrales incluso cuando la señal está distorsionada e incompleta. Este modelo es aplicable a contextos clínicos como el estudio de enfermedades neurodegenerativas como el Alzheimer o el Parkinson, el procesamiento del lenguaje o el desarrollo neurotecnológico.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido