‘Machine learning’ para predecir el comportamiento de componentes electrónicos no testeados
La herramienta que se desarrolle en este proyecto del Centro Nacional de Aceleradores permitirá predecir el comportamiento, por lo que tiene una aplicación directa en proyectos espaciales y de entornos hostiles. Esta permitirá al usuario conocer en la fase de diseño si un componente es adecuado para su instrumento, ahorrando así costes de ejecución de ensayos y tiempo.
Fuente: Universidad de Sevilla
El Centro Nacional de Aceleradores (CNA) y Alter Technology, que actúa como Agente Agregado, lideran el proyecto de Predicción del Comportamiento Eléctrico de Dispositivos Electrónicos bajo Radiación (PRECEDER). Se trata de un subproyecto de transferencia del conocimiento, basado en la inteligencia artificial, cuyo objetivo es preparar una amplia base de datos y desarrollar técnicas de Aprendizaje Automático (‘Machine learning’) sobre un conjunto de resultados, que permitan predecir el comportamiento de otros componentes electrónicos no testeados en base a la experiencia.
El CNA, centro mixto de la Universidad de Sevilla, la Junta de Andalucía y el CSIC, es un referente para los ensayos de irradiación y la empresa Alter es experta en la irradiación de dispositivos electrónicos para el sector espacial. La evaluación del comportamiento frente a la radiación es esencial para el diseño y montaje de satélites, sondas, robots, etc.
La herramienta que se desarrolle en este proyecto permitirá predecir el comportamiento, por lo que tiene una aplicación directa en proyectos espaciales y de entornos hostiles. Esta permitirá al usuario conocer en la fase de diseño si un componente es adecuado para su instrumento, ahorrando así costes de ejecución de ensayos y tiempo.
PRECEDER se enmarca en el Proyecto Ecosistema Innovador con Inteligencia Artificial para Andalucía 2025 liderado por el Campus de Excelencia Internacional Andalucía TECH para que la Universidad de Sevilla y la Universidad de Málaga actúen con empresas tecnológicas tractoras para el desarrollo de tecnologías de inteligencia artificial en todos los ámbitos de la Estrategia de Especialización Inteligente (RIS3) en Andalucía. Cuarenta y nueve subproyectos de transferencia del conocimiento se engloban dentro de esta iniciativa financiada por la Junta de Andalucía, a través de la Dirección General de Investigación y Transferencia del Conocimiento de la Consejería de Transformación económica, Industria, Conocimiento y Universidades, enmarcada en el Programa Operativo FEDER.
Últimas publicaciones
Científicos del Instituto de Agricultura Sostenible de Córdoba han diseñado una metodología para analizar por separado los microorganismos que habitan sobre los fragmentos de acolchados plásticos que cubren el suelo en la agricultura intensiva y los que viven en las partículas de tierra que se quedan adheridas. El trabajo podría ayudar a identificar bacterias capaces de degradar este material y contribuir así a la búsqueda de soluciones biológicas para combatir su acumulación en el campo.
Investigadores de la Universidad de Málaga han desarrollado un algoritmo de Inteligencia Artificial (IA) que realiza un agrupamiento no supervisado de objetos similares evitando el etiquetado manual. Este modelo es capaz de detectar una gran diversidad de elementos en la zona de pistas de un aeródromo, desde personas hasta aviones. Otra de las novedades es su optimización para ahorrar tiempo de cálculo y energía en las tareas de identificación, de forma que permite su uso en dispositivos de bajo consumo.
Sigue leyendoEl estudio, liderado por el Instituto de Investigación Biosanitaria de Granada con la participación de la Universidad de Granada, reveló que las niñas con mayor exposición al bisfenol A presentaban un riesgo casi tres veces mayor de desarrollar sobrepeso u obesidad. El hallazgo destaca la necesidad de seguir investigando sobre la relación entre contaminantes ambientales y enfermedades metabólicas para mejorar el bienestar de la población infantil.
Sigue leyendo