‘Machine learning’ para predecir el comportamiento de componentes electrónicos no testeados
La herramienta que se desarrolle en este proyecto del Centro Nacional de Aceleradores permitirá predecir el comportamiento, por lo que tiene una aplicación directa en proyectos espaciales y de entornos hostiles. Esta permitirá al usuario conocer en la fase de diseño si un componente es adecuado para su instrumento, ahorrando así costes de ejecución de ensayos y tiempo.
Fuente: Universidad de Sevilla
El Centro Nacional de Aceleradores (CNA) y Alter Technology, que actúa como Agente Agregado, lideran el proyecto de Predicción del Comportamiento Eléctrico de Dispositivos Electrónicos bajo Radiación (PRECEDER). Se trata de un subproyecto de transferencia del conocimiento, basado en la inteligencia artificial, cuyo objetivo es preparar una amplia base de datos y desarrollar técnicas de Aprendizaje Automático (‘Machine learning’) sobre un conjunto de resultados, que permitan predecir el comportamiento de otros componentes electrónicos no testeados en base a la experiencia.
El CNA, centro mixto de la Universidad de Sevilla, la Junta de Andalucía y el CSIC, es un referente para los ensayos de irradiación y la empresa Alter es experta en la irradiación de dispositivos electrónicos para el sector espacial. La evaluación del comportamiento frente a la radiación es esencial para el diseño y montaje de satélites, sondas, robots, etc.
La herramienta que se desarrolle en este proyecto permitirá predecir el comportamiento, por lo que tiene una aplicación directa en proyectos espaciales y de entornos hostiles. Esta permitirá al usuario conocer en la fase de diseño si un componente es adecuado para su instrumento, ahorrando así costes de ejecución de ensayos y tiempo.
PRECEDER se enmarca en el Proyecto Ecosistema Innovador con Inteligencia Artificial para Andalucía 2025 liderado por el Campus de Excelencia Internacional Andalucía TECH para que la Universidad de Sevilla y la Universidad de Málaga actúen con empresas tecnológicas tractoras para el desarrollo de tecnologías de inteligencia artificial en todos los ámbitos de la Estrategia de Especialización Inteligente (RIS3) en Andalucía. Cuarenta y nueve subproyectos de transferencia del conocimiento se engloban dentro de esta iniciativa financiada por la Junta de Andalucía, a través de la Dirección General de Investigación y Transferencia del Conocimiento de la Consejería de Transformación económica, Industria, Conocimiento y Universidades, enmarcada en el Programa Operativo FEDER.
Últimas publicaciones
Un equipo de investigación de la Universidad de Córdoba y el Instituto de Agricultura Sostenible ha diseñado AquaCrop-IoT, una herramienta que combina cámaras, sensores y modelos de simulación para ofrecer recomendaciones hídricas según el estado del cultivo y las condiciones meteorológicas. El objetivo es obtener un gemelo digital de cada parcela que calcule en tiempo real la cantidad de agua que necesite.
Sigue leyendoEl grupo ATLAS de la Universidad de Sevilla participa en un estudio internacional que arroja nueva luz sobre la diversidad genética de la sociedad andalusí entre los siglos VIII y XI d. C y refuerza la relevancia histórica del dolmen como espacio sacro usado a lo largo del tiempo.
Un equipo de investigación de la Universidad de Almería y la Universidad Nacional de Mar del Plata en Argentina ha encapsulado proteínas activas extraídas de los residuos de la industria pesquera. Con esta forma esférica, mantienen su actividad y estabilidad durante más de dos meses para emplearse como base en quitamanchas o nutrición animal.
Sigue leyendo


