VOLVER

Share

‘Machine learning’ para predecir el comportamiento de componentes electrónicos no testeados

La herramienta que se desarrolle en este proyecto del Centro Nacional de Aceleradores permitirá predecir el comportamiento, por lo que tiene una aplicación directa en proyectos espaciales y de entornos hostiles. Esta permitirá al usuario conocer en la fase de diseño si un componente es adecuado para su instrumento, ahorrando así costes de ejecución de ensayos y tiempo.

Fuente: Universidad de Sevilla


Sevilla |
18 de marzo de 2021

El Centro Nacional de Aceleradores (CNA) y Alter Technology, que actúa como Agente Agregado, lideran el proyecto de Predicción del Comportamiento Eléctrico de Dispositivos Electrónicos bajo Radiación (PRECEDER). Se trata de un subproyecto de transferencia del conocimiento, basado en la inteligencia artificial, cuyo objetivo es preparar una amplia base de datos y desarrollar técnicas de Aprendizaje Automático (‘Machine learning’) sobre un conjunto de resultados, que permitan predecir el comportamiento de otros componentes electrónicos no testeados en base a la experiencia.

El CNA, centro mixto de la Universidad de Sevilla, la Junta de Andalucía y el CSIC, es un referente para los ensayos de irradiación y la empresa Alter es experta en la irradiación de dispositivos electrónicos para el sector espacial. La evaluación del comportamiento frente a la radiación es esencial para el diseño y montaje de satélites, sondas, robots, etc.

La herramienta que se desarrolle en este proyecto permitirá predecir el comportamiento, por lo que tiene una aplicación directa en proyectos espaciales y de entornos hostiles. Esta permitirá al usuario conocer en la fase de diseño si un componente es adecuado para su instrumento, ahorrando así costes de ejecución de ensayos y tiempo.

PRECEDER se enmarca en el Proyecto Ecosistema Innovador con Inteligencia Artificial para Andalucía 2025 liderado por el Campus de Excelencia Internacional Andalucía TECH para que la Universidad de Sevilla y la Universidad de Málaga actúen con empresas tecnológicas tractoras para el desarrollo de tecnologías de inteligencia artificial en todos los ámbitos de la Estrategia de Especialización Inteligente (RIS3) en Andalucía. Cuarenta y nueve subproyectos de transferencia del conocimiento se engloban dentro de esta iniciativa financiada por la Junta de Andalucía, a través de la Dirección General de Investigación y Transferencia del Conocimiento de la Consejería de Transformación económica, Industria, Conocimiento y Universidades, enmarcada en el Programa Operativo FEDER.


Share

Últimas publicaciones

Patentan un método que aumenta el crecimiento de microalgas y las conserva más tiempo
Almería | 24 de enero de 2026

Un equipo de investigación de la Universidad de Almería ha desarrollado una fórmula para preservar cepas microalgales en un medio de cultivo más viscoso que aumenta el tamaño de las colonias de estos microorganismos. Con la nueva estrategia, las poblaciones pasan de conservarse una semana a dos meses, manteniendo sus características genéticas y funcionales intactas para los experimentos en laboratorio.

Sigue leyendo
Administrar hierro intravenoso en el embarazo reduce la probabilidad de anemia materna y mejora la salud neonatal
Granada | 19 de enero de 2026

Un ensayo denominado FAIR-Trial y realizado en tres hospitales de Pakistán concluye que la  administración de hierro intravenoso aumenta la concentración de hemoglobina antes del parto. La investigiación se ha realizado con la participación de 600 mujeres embarazadas con deficiencia de hierro no anémica. Los resultados se han publicado en The Lancet Haematology.

Sigue leyendo
Diseñan un método rápido para analizar las propiedades saludables del comino negro
Córdoba | 17 de enero de 2026

Un equipo de investigación del Instituto de Agricultura Sostenible de Córdoba ha validado un sistema para estudiar semillas enteras en segundos, sin productos químicos y con similar fiabilidad que las técnicas tradicionales. El avance acorta el proceso de selección necesario para obtener variedades con mayor contenido en compuestos saludables.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido