Nobel de Física 2024 para dos científicos pioneros en redes neuronales artificiales
La Real Academia Sueca de las Ciencias ha premiado a los investigadores John Hopfield, de la Universidad de Princeton (Estados Unidos), y Geoffrey Hinton, de la Universidad de Toronto (Canadá), por sus descubrimientos e inventos que permiten el aprendizaje automático con las redes neuronales artificiales. Hallazgos fundamentales para el renacer de la inteligencia artificial y el desarrollo posterior de herramientas como ChatGPT.
Fuente: Agencia SINC
Los dos Premios Nobel de Física de este año han utilizado herramientas de la física para desarrollar métodos que son la base del potente aprendizaje automático actual, una de las ramas de la inteligencia artificial (IA).
La Real Academia Sueca de las Ciencias ha dado a conocer este martes sus nombres: John Hopfield, que creó una memoria asociativa capaz de almacenar y reconstruir imágenes y otros tipos de patrones en los datos, y Geoffrey Hinton, quien inventó un método capaz de encontrar de forma autónoma propiedades en los datos y realizar así tareas como identificar elementos concretos en imágenes.
Se premia a ambos “por descubrimientos e invenciones fundacionales que permiten el aprendizaje automático con redes neuronales artificiales”, según el Comité Nobel de Física. Este campo está revolucionando la ciencia, la ingeniería y la vida cotidiana.
Cuando hablamos de IA solemos referirnos al aprendizaje automático mediante redes neuronales artificiales. Esta tecnología se inspiró originalmente en la estructura y redes neuronales naturales del cerebro.
Las redes neuronales naturales tienen neuronas que envían señales a través del proceso de la sinapsis. Cuando aprendemos cosas, las conexiones entre algunas neuronas se hacen más fuertes, mientras que otras, más débiles.
En una red neuronal artificial, esas neuronas cerebrales están representadas por nodos, que son codificados con valores diferentes. Estos están conectados entre sí y también se influyen mutuamente a través de conexiones (como las sinapsis), que pueden reforzarse o debilitarse.
La red se entrena, por ejemplo, desarrollando conexiones más fuertes entre nodos que tienen valores altos simultáneamente. Los galardonados de este año han realizado importantes trabajos con este tipo de redes neuronales artificiales desde la década de 1980.
La red de Hopfield
John Hopfield, de la Universidad de Princeton (EE UU), inventó una red que utiliza un método para guardar y recrear patrones. Podemos imaginar los nodos como píxeles. La llamada red de Hopfield utiliza la física que describe las características de un material debido a su espín atómico, una propiedad que convierte a cada átomo en un pequeño imán.
La red en su conjunto se describe de forma equivalente a la energía en un sistema de espín dentro de la física, y se entrena encontrando valores para las conexiones entre los nodos de forma que las imágenes guardadas tengan una energía baja.
Cuando la red de Hopfield recibe una imagen incompleta o distorsionada, recorre metódicamente los nodos y actualiza sus valores para que la energía de la red disminuya. De este modo, la red trabaja paso a paso para encontrar la imagen guardada que más se parece a esa imperfecta.
Hinton usa la máquina de Boltzmann
Por su parte, el profesor Geoffrey Hinton de la Universidad de Toronto (Canadá), utilizó la red de Hopfield como base para una nueva red que utiliza un método diferente: la máquina de Boltzmann. Esta puede aprender a reconocer elementos característicos en un determinado tipo de datos. Hinton utilizó herramientas de la física estadística, la ciencia de los sistemas construidos a partir de muchos componentes similares.
La máquina se entrena alimentándola con ejemplos que tienen muchas probabilidades de aparecer cuando se pone en marcha. La máquina de Boltzmann puede utilizarse para clasificar imágenes o crear nuevos ejemplos del tipo de patrón sobre el que se ha entrenado. Hinton se ha basado en este trabajo, ayudando a iniciar el explosivo desarrollo actual del aprendizaje automático.
“El trabajo de los dos galardonados ya ha sido de lo más beneficioso. En física utilizamos redes neuronales artificiales en una amplia gama de áreas, como el desarrollo de nuevos materiales con propiedades específicas”, ha destacado Ellen Moons, presidenta del Comité Nobel de Física.
El estadounidense Hopfield nació en 1933 en Chicago, se doctoró en 1958 en la Universidad de Cornell (Nueva York) y ahora es profesor emérito en Princeton. Por su parte, Hinton nació en 1947 en Londres (Reino Unido), se doctoró en 1978 en la Universidad de Edimburgo y, tras trasladarse a Canadá, actualmente ejerce en la Universidad de Toronto.
Últimas publicaciones
Un grupo de investigación de la Universidad de Cádiz ha empleado un sistema de extracción ‘verde’ para identificar la cantidad de este aminoácido esencial, necesario para producir proteínas, así como la hormona melatonina y el neurotransmisor serotonina en el organismo. Tras los ensayos, realizados con hongos comestibles del sur de Andalucía y el norte de Marruecos, los resultados evidencian su alta concentración en este tipo de alimentos y abre nuevas vías de estudio para determinar su potencial terapéutico.
Sigue leyendoUn equipo de investigación de la Universidad de Málaga ha evaluado a casi un centenar de estudiantes de entre 8 y 12 años para entender mejor los desafíos léxicos a los que se enfrentan aquellos con pérdida auditiva. Las expertas sugieren un enfoque basado en relaciones entre determinadas clases de palabras para mejorar su aprendizaje y que puedan estudiar en igualdad de condiciones que sus compañeros oyentes.
Nos encontramos a menos de un día del solsticio de diciembre, que tendrá lugar a las 10:20 de este sábado, hora española. Esta efeméride marca el comienzo de las estación astronómicas de invierno para el hemisferio norte. Dejamos atrás el otoño, con sus tonalidades amarillas, naranjas y marrones, y damos paso al color blanco de los copos de nieve, a las luces de colores, y a las flores de pascua. Son algunos de los protagonistas de estas fiestas, que también tienen su ciencia. Por ello os proponemos descubrir diferentes curiosidades científicas relacionadas con la Navidad. ¿Sabías que el espumillón comenzó a fabricarse de aluminio y plomo y con el paso del tiempo ha variado su composición para hacerse ahora de PVC? ¿Te has preguntado alguna vez por qué las típicas flores de esta época del año son esas y no otras? ¿ O cuánto consumen las luces led del árbol que adornas cada año?
Sigue leyendo