Nobel de Física 2024 para dos científicos pioneros en redes neuronales artificiales
La Real Academia Sueca de las Ciencias ha premiado a los investigadores John Hopfield, de la Universidad de Princeton (Estados Unidos), y Geoffrey Hinton, de la Universidad de Toronto (Canadá), por sus descubrimientos e inventos que permiten el aprendizaje automático con las redes neuronales artificiales. Hallazgos fundamentales para el renacer de la inteligencia artificial y el desarrollo posterior de herramientas como ChatGPT.
Fuente: Agencia SINC
Los dos Premios Nobel de Física de este año han utilizado herramientas de la física para desarrollar métodos que son la base del potente aprendizaje automático actual, una de las ramas de la inteligencia artificial (IA).
La Real Academia Sueca de las Ciencias ha dado a conocer este martes sus nombres: John Hopfield, que creó una memoria asociativa capaz de almacenar y reconstruir imágenes y otros tipos de patrones en los datos, y Geoffrey Hinton, quien inventó un método capaz de encontrar de forma autónoma propiedades en los datos y realizar así tareas como identificar elementos concretos en imágenes.
Se premia a ambos “por descubrimientos e invenciones fundacionales que permiten el aprendizaje automático con redes neuronales artificiales”, según el Comité Nobel de Física. Este campo está revolucionando la ciencia, la ingeniería y la vida cotidiana.

Las redes neuronales naturales han inspirado las artificiales. / Johan Jarnestad/The Royal Swedish Academy of Sciences.
Cuando hablamos de IA solemos referirnos al aprendizaje automático mediante redes neuronales artificiales. Esta tecnología se inspiró originalmente en la estructura y redes neuronales naturales del cerebro.
Las redes neuronales naturales tienen neuronas que envían señales a través del proceso de la sinapsis. Cuando aprendemos cosas, las conexiones entre algunas neuronas se hacen más fuertes, mientras que otras, más débiles.
En una red neuronal artificial, esas neuronas cerebrales están representadas por nodos, que son codificados con valores diferentes. Estos están conectados entre sí y también se influyen mutuamente a través de conexiones (como las sinapsis), que pueden reforzarse o debilitarse.
La red se entrena, por ejemplo, desarrollando conexiones más fuertes entre nodos que tienen valores altos simultáneamente. Los galardonados de este año han realizado importantes trabajos con este tipo de redes neuronales artificiales desde la década de 1980.

El aprendizaje automático ayuda a la clasificación y el análisis de ingentes cantidades de datos. / Johan Jarnestad/The Royal Swedish Academy of Sciences.
La red de Hopfield
John Hopfield, de la Universidad de Princeton (EE UU), inventó una red que utiliza un método para guardar y recrear patrones. Podemos imaginar los nodos como píxeles. La llamada red de Hopfield utiliza la física que describe las características de un material debido a su espín atómico, una propiedad que convierte a cada átomo en un pequeño imán.
La red en su conjunto se describe de forma equivalente a la energía en un sistema de espín dentro de la física, y se entrena encontrando valores para las conexiones entre los nodos de forma que las imágenes guardadas tengan una energía baja.
Cuando la red de Hopfield recibe una imagen incompleta o distorsionada, recorre metódicamente los nodos y actualiza sus valores para que la energía de la red disminuya. De este modo, la red trabaja paso a paso para encontrar la imagen guardada que más se parece a esa imperfecta.
Hinton usa la máquina de Boltzmann
Por su parte, el profesor Geoffrey Hinton de la Universidad de Toronto (Canadá), utilizó la red de Hopfield como base para una nueva red que utiliza un método diferente: la máquina de Boltzmann. Esta puede aprender a reconocer elementos característicos en un determinado tipo de datos. Hinton utilizó herramientas de la física estadística, la ciencia de los sistemas construidos a partir de muchos componentes similares.
La máquina se entrena alimentándola con ejemplos que tienen muchas probabilidades de aparecer cuando se pone en marcha. La máquina de Boltzmann puede utilizarse para clasificar imágenes o crear nuevos ejemplos del tipo de patrón sobre el que se ha entrenado. Hinton se ha basado en este trabajo, ayudando a iniciar el explosivo desarrollo actual del aprendizaje automático.
“El trabajo de los dos galardonados ya ha sido de lo más beneficioso. En física utilizamos redes neuronales artificiales en una amplia gama de áreas, como el desarrollo de nuevos materiales con propiedades específicas”, ha destacado Ellen Moons, presidenta del Comité Nobel de Física.
El estadounidense Hopfield nació en 1933 en Chicago, se doctoró en 1958 en la Universidad de Cornell (Nueva York) y ahora es profesor emérito en Princeton. Por su parte, Hinton nació en 1947 en Londres (Reino Unido), se doctoró en 1978 en la Universidad de Edimburgo y, tras trasladarse a Canadá, actualmente ejerce en la Universidad de Toronto.
Últimas publicaciones
Coordinado conjuntamente por investigadoras de la Universidad Pablo de Olavide, la Universidad de La Habana y la Ulster University, este avance representa un paso decisivo hacia soluciones sostenibles para el tratamiento de aguas destinadas al riego agrícola y otros usos no potables. Uno de los aspectos más destacados del proyecto ha sido su orientación práctica ya que se ha aplicado directamente a muestras reales de río.
Sigue leyendoLos resultados del trabajo, que ha estado liderado por un equipo de investigadores de la Universidad de Granada, revelan que prácticas cuestionables como la citación coercitiva o las autorías injustificadas están muy extendidas. Para los responsables del estudio, estas conductas están vinculadas a sistemas de incentivos laborales y formativos deficientes que es necesario revisar y corregir.
Sigue leyendoLa directora científica del centro Genyo, Marta Alarcón Riquelme, coordina el proyecto 3TR puesto en marcha en 2019 y que persigue mejorar la respuesta al tratamiento en enfermedades autoinmunes, inflamatorias y alérgicas. Hasta el momento, más de 1.000 pacientes con lupus, cuyas muestras se están analizando por métodos multi-ómicos, han sido reclutados.
Sigue leyendo