Trabajan en un sistema de ayuda al diagnóstico de la COVID-19 basado en imágenes de rayos X de los pulmones de los pacientes
Profesionales del ámbito médico de todo el mundo llevan volcando radiografías pulmonares desde el inicio de la pandemia. Este sistema utiliza aprendizaje profundo (Deep Learning) para entrenar un modelo de red neuronal que clasifica entre pacientes sanos, pacientes con neumonía y pacientes con COVID-19. Para ello, se ha hecho uso de una base de datos online de libre acceso donde profesionales del ámbito médico de todo el mundo llevan volcando radiografías pulmonares desde el inicio de la pandemia.
Fuente: Universidad de Sevilla
Investigadores del Departamento de Arquitectura y Tecnología de Computadores de la Escuela Técnica Superior de Ingeniería Informática (ETSII) de la Universidad de Sevilla trabajan en un sistema de ayuda al diagnóstico de la COVID-19 basado en imágenes de rayos X de los pulmones de los pacientes. Este sistema utiliza aprendizaje profundo (Deep Learning) para entrenar un modelo de red neuronal que clasifica entre pacientes sanos, pacientes con neumonía y pacientes con COVID-19. Para ello, se ha hecho uso de una base de datos online de libre acceso donde profesionales del ámbito médico de todo el mundo llevan volcando radiografías pulmonares desde el inicio de la pandemia.
“La propagación del virus SARS-CoV-2 ha convertido la enfermedad COVID-19 en una epidemia mundial. Las pruebas más comunes para identificarla son invasivas, requieren mucho tiempo y recursos limitados. El uso de imágenes médicas obtenidas mediante resonancias magnéticas y/o rayos X se utiliza cada vez más para facilitar tareas de ayuda al diagnóstico, habiendo sido probado satisfactoriamente para identificar problemas pulmonares. Sin embargo, el diagnóstico por estos métodos debe ser realizado con la ayuda de un médico especialista, lo que limita su uso masivo en la población”, señala el profesor de la Universidad de Sevilla Manuel Jesús Domínguez.
El investigador añade, por otro lado, que las herramientas de procesamiento de imágenes pueden ayudar a reducir la carga de los profesionales al descartar casos negativos. En concreto, las técnicas avanzadas de inteligencia artificial como el aprendizaje profundo (Deep Learning) han demostrado una alta efectividad en la identificación de patrones como los que se pueden encontrar en el tejido enfermo.
En la misma línea, este trabajo analiza la efectividad de un modelo de aprendizaje profundo basado en una red neuronal VGG-16 para la identificación de neumonía y COVID-19 utilizando radiografías del torso. Los resultados, publicados en la revista Applied Sciences, muestran una alta efectividad en la identificación de COVID-19 de alrededor del 100%, lo que demuestra que puede utilizarse como mecanismo de ayuda al diagnóstico de esta enfermedad.
Esta investigación ha sido financiado a través de la Cátedra de Telefónica ‘Inteligencia en la Red’ de la ETS de Ingeniería Informática.
Últimas publicaciones
El hallazgo se produjo casualmente tras una exhaustiva campaña de muestreo de mosquitos en casi 500 puntos en las provincias de Sevilla, Huelva y Cádiz. Por ello, la nueva especie, que se diferencia de otras similares por su tamaño y morfología, ha sido nombrada como Lipoptena andaluciensis, en honor a su lugar de captura. De todos los ejemplares analizados, tres albergaron patógenos de interés sanitario como Coxiella burnetti y dos bacterias endosimbiontes.
Sigue leyendoA partir de una tecnología no invasiva, un grupo de investigación de la Universidad de Córdoba ha creado una herramienta para garantizar la calidad óptima de la fresa y minimizar el desperdicio alimentario. La herramienta ha sido probada en los almacenes de Migros, el vendedor de alimentos frescos más grande en el sector minorista de Turquía.
Sigue leyendoEl Centro Andaluz de Biología del Desarrollo ha estudiado expresiones de los genes de varias especies durante su desarrollo embrionario para entender las características comunes a los deuteróstomos, el gran grupo animal en el que nos encontramos los mamíferos. Su publicación en la revista Nature Ecology and Evolution ha generado una colección de datos que puede contribuir a mejorar los conocimientos sobre su historia evolutiva.
Sigue leyendo