VOLVER

Share

Trabajan en un sistema de ayuda al diagnóstico de la COVID-19 basado en imágenes de rayos X de los pulmones de los pacientes

Profesionales del ámbito médico de todo el mundo llevan volcando radiografías pulmonares desde el inicio de la pandemia. Este sistema utiliza aprendizaje profundo (Deep Learning) para entrenar un modelo de red neuronal que clasifica entre pacientes sanos, pacientes con neumonía y pacientes con COVID-19. Para ello, se ha hecho uso de una base de datos online de libre acceso donde profesionales del ámbito médico de todo el mundo llevan volcando radiografías pulmonares desde el inicio de la pandemia.

Fuente: Universidad de Sevilla


Sevilla |
14 de julio de 2020

Investigadores del Departamento de Arquitectura y Tecnología de Computadores de la Escuela Técnica Superior de Ingeniería Informática (ETSII) de la Universidad de Sevilla trabajan en un sistema de ayuda al diagnóstico de la COVID-19 basado en imágenes de rayos X de los pulmones de los pacientes. Este sistema utiliza aprendizaje profundo (Deep Learning) para entrenar un modelo de red neuronal que clasifica entre pacientes sanos, pacientes con neumonía y pacientes con COVID-19. Para ello, se ha hecho uso de una base de datos online de libre acceso donde profesionales del ámbito médico de todo el mundo llevan volcando radiografías pulmonares desde el inicio de la pandemia.

El uso de imágenes médicas obtenidas mediante resonancias magnéticas y/o rayos X se utiliza cada vez más para facilitar tareas de ayuda al diagnóstico, habiendo sido probado satisfactoriamente para identificar problemas pulmonares.

“La propagación del virus SARS-CoV-2 ha convertido la enfermedad COVID-19 en una epidemia mundial. Las pruebas más comunes para identificarla son invasivas, requieren mucho tiempo y recursos limitados. El uso de imágenes médicas obtenidas mediante resonancias magnéticas y/o rayos X se utiliza cada vez más para facilitar tareas de ayuda al diagnóstico, habiendo sido probado satisfactoriamente para identificar problemas pulmonares. Sin embargo, el diagnóstico por estos métodos debe ser realizado con la ayuda de un médico especialista, lo que limita su uso masivo en la población”, señala el profesor de la Universidad de Sevilla Manuel Jesús Domínguez.

El investigador añade, por otro lado, que las herramientas de procesamiento de imágenes pueden ayudar a reducir la carga de los profesionales al descartar casos negativos. En concreto, las técnicas avanzadas de inteligencia artificial como el aprendizaje profundo (Deep Learning) han demostrado una alta efectividad en la identificación de patrones como los que se pueden encontrar en el tejido enfermo.

En la misma línea, este trabajo analiza la efectividad de un modelo de aprendizaje profundo basado en una red neuronal VGG-16 para la identificación de neumonía y COVID-19 utilizando radiografías del torso. Los resultados, publicados en la revista Applied Sciences, muestran una alta efectividad en la identificación de COVID-19 de alrededor del 100%, lo que demuestra que puede utilizarse como mecanismo de ayuda al diagnóstico de esta enfermedad.

Esta investigación ha sido financiado a través de la Cátedra de Telefónica ‘Inteligencia en la Red’ de la ETS de Ingeniería Informática.


Share

Últimas publicaciones

Un estudio revela que solo el 16% de las áreas de gran biodiversidad goza de protección frente al tráfico marítimo
Sevilla | 26 de noviembre de 2025

Una investigación con participación de la EBD-CSIC revela una cobertura insuficiente de las Áreas Marinas Protegidas. El trabajo sienta las bases para definir políticas que gestionen de forma sostenible los desafíos ecológicos que implica el transporte marítimo.

Sigue leyendo
Los cambios ambientales del pasado impulsaron la aparición de nuevas especies
Sevilla | 25 de noviembre de 2025

Un estudio internacional en el que participa un investigador de la Universidad de Sevilla, ha analizado el caso del sudeste asiático, una de las regiones con mayor diversidad biológica del planeta, y ha identificado una nueva especie de ardilla, posiblemente la ardilla arborícola más grande del mundo.

Sigue leyendo
Revelan por primera vez un mecanismo esencial para el inicio de la vida en los vertebrados
Sevilla | 25 de noviembre de 2025

Gracias a una herramienta CRISPR que elimina el ARN, investigadores del CABD han observado por primera vez el momento en que el embrión toma el control de su desarrollo. Una modificación química permite al embrión encender su propio genoma y borrar las instrucciones heredadas de la madre para iniciar su formación.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido