VOLVER

Share

Trabajan en un sistema de ayuda al diagnóstico de la COVID-19 basado en imágenes de rayos X de los pulmones de los pacientes

Profesionales del ámbito médico de todo el mundo llevan volcando radiografías pulmonares desde el inicio de la pandemia. Este sistema utiliza aprendizaje profundo (Deep Learning) para entrenar un modelo de red neuronal que clasifica entre pacientes sanos, pacientes con neumonía y pacientes con COVID-19. Para ello, se ha hecho uso de una base de datos online de libre acceso donde profesionales del ámbito médico de todo el mundo llevan volcando radiografías pulmonares desde el inicio de la pandemia.

Fuente: Universidad de Sevilla


Sevilla |
14 de julio de 2020

Investigadores del Departamento de Arquitectura y Tecnología de Computadores de la Escuela Técnica Superior de Ingeniería Informática (ETSII) de la Universidad de Sevilla trabajan en un sistema de ayuda al diagnóstico de la COVID-19 basado en imágenes de rayos X de los pulmones de los pacientes. Este sistema utiliza aprendizaje profundo (Deep Learning) para entrenar un modelo de red neuronal que clasifica entre pacientes sanos, pacientes con neumonía y pacientes con COVID-19. Para ello, se ha hecho uso de una base de datos online de libre acceso donde profesionales del ámbito médico de todo el mundo llevan volcando radiografías pulmonares desde el inicio de la pandemia.

El uso de imágenes médicas obtenidas mediante resonancias magnéticas y/o rayos X se utiliza cada vez más para facilitar tareas de ayuda al diagnóstico, habiendo sido probado satisfactoriamente para identificar problemas pulmonares.

“La propagación del virus SARS-CoV-2 ha convertido la enfermedad COVID-19 en una epidemia mundial. Las pruebas más comunes para identificarla son invasivas, requieren mucho tiempo y recursos limitados. El uso de imágenes médicas obtenidas mediante resonancias magnéticas y/o rayos X se utiliza cada vez más para facilitar tareas de ayuda al diagnóstico, habiendo sido probado satisfactoriamente para identificar problemas pulmonares. Sin embargo, el diagnóstico por estos métodos debe ser realizado con la ayuda de un médico especialista, lo que limita su uso masivo en la población”, señala el profesor de la Universidad de Sevilla Manuel Jesús Domínguez.

El investigador añade, por otro lado, que las herramientas de procesamiento de imágenes pueden ayudar a reducir la carga de los profesionales al descartar casos negativos. En concreto, las técnicas avanzadas de inteligencia artificial como el aprendizaje profundo (Deep Learning) han demostrado una alta efectividad en la identificación de patrones como los que se pueden encontrar en el tejido enfermo.

En la misma línea, este trabajo analiza la efectividad de un modelo de aprendizaje profundo basado en una red neuronal VGG-16 para la identificación de neumonía y COVID-19 utilizando radiografías del torso. Los resultados, publicados en la revista Applied Sciences, muestran una alta efectividad en la identificación de COVID-19 de alrededor del 100%, lo que demuestra que puede utilizarse como mecanismo de ayuda al diagnóstico de esta enfermedad.

Esta investigación ha sido financiado a través de la Cátedra de Telefónica ‘Inteligencia en la Red’ de la ETS de Ingeniería Informática.


Share

Últimas publicaciones

Desarrollan un sistema ‘inteligente’ más preciso para detectar lesiones en la piel
Sevilla | 13 de julio de 2024

Un equipo de investigación de la Universidad de Sevilla ha diseñado una herramienta que identifica hasta siete tipos de enfermedades dermatológicas. Ésta podría servir como apoyo a la toma de decisiones clínicas en el ámbito sanitario y para la detección precoz en zonas aisladas y sin acceso a centros médicos cercanos.

Sigue leyendo
La Fundación Descubre y el Foro Química y Sociedad acuerdan colaborar para promover la divulgación de la química
Andalucía | 12 de julio de 2024

Ambas organizaciones, dedicadas a la divulgación de la Ciencia, se alían para dar voz y difundir contenidos divulgativos de interés sobre esta área con el objetivo de contribuir a un mayor conocimiento y conciencia social sobre la relevancia de la Química. Descubre sumará nuevos contenidos divulgativos en el portal especializado en química, Clickmica.

Sigue leyendo
Prueban con éxito una conexión de red móvil más rápida para jugar en la nube
Málaga | 11 de julio de 2024

Un equipo de investigación de la Universidad de Málaga ha validado por primera vez en Andalucía el uso de la nueva generación de telefonía móvil 5G aplicada a los videojuegos en la nube. Con esta información, los expertos ponen a disposición de los operadores de red y la comunidad científica datos técnicos reales que pueden emplearse en videojuegos en red.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido