Un equipo de la UCO emplea un algoritmo basado en la IA para localizar las celdas llenas de miel en las colmenas
El algoritmo, entrenado a base de imágenes del colmenar de la Universidad de Córdoba, presta apoyo a una tarea compleja que tradicionalmente se realiza de forma manual. Esta innovación tecnológica aplicada a la apicultura se suma a otras desarrolladas por este equipo como el contador de abejas que monitoriza las “puertas” de las colmenas a través de luz infrarroja y pulsos eléctricos o el propio sistema ‘WBee’, un sistema de monitorización remota pionero en España.
Fuente: Universidad de Córdoba
En apicultura, la tarea de localizar en un panal las celdas que contienen crías, polen o miel es fundamental para obtener información sobre cuándo recolectar la miel o evaluar el estado de salud de la colmena. Se trata de un proceso que se realiza tradicionalmente de forma manual y cuya automatización se ha encontrado siempre con un problema: las abejas cubren con cera las superficies que contienen miel para mantenerlas en los niveles de humedad adecuados, lo que hace que pierdan su forma hexagonal característica. Esto dificulta su identificación a través de sistemas que han sido diseñados para identificar las celdas buscando formas hexagonales.

Esta innovación aplicada a la apicultura se suma a otras desarrolladas por este equipo de investigación.
Ahora, un equipo de la Universidad de Córdoba formado por personal investigador de los departamentos de Zoología e Ingeniería Electrónica y de Computadores ha empleado inteligencia artificial sobre imágenes para desarrollar un sistema que ayude a los apicultores en esta labor. Para ello han aplicado un algoritmo de segmentación semántica de aprendizaje profundo denominado ‘Feature Pyramid Network (FPN)’ que permite realizar múltiples clasificaciones a diferentes resoluciones, ofreciendo una solución a este problema de forma robusta y automatizada.
El investigador del departamento de Ingeniería Electrónica y de Computadores Francisco Javier Rodríguez Lozano explica que el algoritmo ha sido entrenado con distintas fotografías de panales obtenidas del colmenar de la Universidad de Córdoba y se ha comparado con diferentes algoritmos de segmentación semántica, como U-Net, y, además, con siete extractores de características diferentes.
Este trabajo, en el que participan también Francisco Javier Quiles Latorre y Manuel Ortiz López (Departamento de Ingeniería Electrónica y de Computadores) y José Manuel Flores Serrano (Departamento de Zoología), ha obtenido unos resultados de clasificación por encima del 92% en métricas típicas de segmentación de imágenes, lo que garantiza un importante apoyo a la tradicional tarea manual realizada por los apicultores, mejorando su precisión y eficiencia y reduciendo el tiempo de ejecución de esta labor.
Esta innovación tecnológica aplicada a la apicultura se suma a otras desarrolladas por este equipo interdisciplinar de investigación, como el contador de abejas que monitoriza las “puertas” de las colmenas a través de luz infrarroja y pulsos eléctricos o el propio sistema ‘WBee’, un sistema de monitorización remota, pionero en España, destinado a facilitar la observación de la actividad de las colmenas a apicultores y científicos sin alterar la vida normal de la colonia de abejas.
Referencia:
Francisco J. Rodríguez-Lozano, Sergio R. Geninatti, José M. Flores, Francisco J. Quiles-Latorre, Manuel Ortiz-Lopez. ‘Capped honey segmentation in honey combs based on deep learning approach’. Computers and Electronics in Agriculture Volume 227, Part 1, December 2025.
Últimas publicaciones
Llevado a cabo por un equipo de investigación del Centro Andaluz de Biología del Desarrollo, el estudio abre nuevas posibilidades para comprender mejor la miopatía nemalínica y desarrollar terapias que contrarresten los efectos del exceso de hierro y el estrés oxidativo.
Sigue leyendoUn estudio de la Universidad de Córdoba ha desarrollado una herramienta para predecir, bajo diferentes condiciones de temperatura, el desarrollo de una de las principales bacterias de transmisión alimentaria, lo que permite estimar con mayor precisión la vida útil de estos alimentos.
Sigue leyendoUn equipo de investigación de la Universidad de Sevilla ha desarrollado una tecnología que higieniza el agua filtrando restos contaminantes y descomponiéndolos mediante el uso de energía solar. Tras ensayos en el laboratorio y en una lavandería de hospital, este estudio evalúa la rentabilidad y sostenibilidad de esta técnica para la gestión de residuos, al regenerar un bien finito como el agua empleando un recurso natural, en este caso la luz del Sol.