VOLVER

Share

Un equipo de la UCO emplea un algoritmo basado en la IA para localizar las celdas llenas de miel en las colmenas

El algoritmo, entrenado a base de imágenes del colmenar de la Universidad de Córdoba, presta apoyo a una tarea compleja que tradicionalmente se realiza de forma manual. Esta innovación tecnológica aplicada a la apicultura se suma a otras desarrolladas por este equipo como el contador de abejas que monitoriza las “puertas” de las colmenas a través de luz infrarroja y pulsos eléctricos o el propio sistema ‘WBee’, un sistema de monitorización remota pionero en España.

Fuente: Universidad de Córdoba


Córdoba |
27 de marzo de 2025

En apicultura, la tarea de localizar en un panal las celdas que contienen crías, polen o miel es fundamental para obtener información sobre cuándo recolectar la miel o evaluar el estado de salud de la colmena. Se trata de un proceso que se realiza tradicionalmente de forma manual y cuya automatización se ha encontrado siempre con un problema: las abejas cubren con cera las superficies que contienen miel para mantenerlas en los niveles de humedad adecuados, lo que hace que pierdan su forma hexagonal característica. Esto dificulta su identificación a través de sistemas que han sido diseñados para identificar las celdas buscando formas hexagonales.

Esta innovación aplicada a la apicultura se suma a otras desarrolladas por este equipo de investigación.

Ahora, un equipo de la Universidad de Córdoba formado por personal investigador de los departamentos de Zoología Ingeniería Electrónica y de Computadores ha empleado inteligencia artificial sobre imágenes para desarrollar un sistema que ayude a los apicultores en esta labor. Para ello han aplicado un algoritmo de segmentación semántica de aprendizaje profundo denominado ‘Feature Pyramid Network (FPN)’ que permite realizar múltiples clasificaciones a diferentes resoluciones, ofreciendo una solución a este problema de forma robusta y automatizada.

El investigador del departamento de Ingeniería Electrónica y de Computadores Francisco Javier Rodríguez Lozano explica que el algoritmo ha sido entrenado con distintas fotografías de panales obtenidas del colmenar de la Universidad de Córdoba y se ha comparado con diferentes algoritmos de segmentación semántica, como U-Net, y, además, con siete extractores de características diferentes.

Este trabajo, en el que participan también Francisco Javier Quiles Latorre y Manuel Ortiz López (Departamento de Ingeniería Electrónica y de Computadores) y José Manuel Flores Serrano (Departamento de Zoología), ha obtenido unos resultados de clasificación por encima del 92% en métricas típicas de segmentación de imágenes, lo que garantiza un importante apoyo a la tradicional tarea manual realizada por los apicultores, mejorando su precisión y eficiencia y reduciendo el tiempo de ejecución de esta labor.

Esta innovación tecnológica aplicada a la apicultura se suma a otras desarrolladas por este equipo interdisciplinar de investigación, como el contador de abejas que monitoriza las “puertas” de las colmenas a través de luz infrarroja y pulsos eléctricos o el propio sistema ‘WBee’, un sistema de monitorización remota, pionero en España, destinado a facilitar la observación de la actividad de las colmenas a apicultores y científicos sin alterar la vida normal de la colonia de abejas.

Referencia:

Francisco J. Rodríguez-Lozano, Sergio R. Geninatti, José M. Flores, Francisco J. Quiles-Latorre, Manuel Ortiz-Lopez. ‘Capped honey segmentation in honey combs based on deep learning approach’. Computers and Electronics in Agriculture Volume 227, Part 1, December 2025.


Share

Últimas publicaciones

Administrar hierro intravenoso en el embarazo reduce la probabilidad de anemia materna y mejora la salud neonatal
Granada | 19 de enero de 2026

Un ensayo denominado FAIR-Trial y realizado en tres hospitales de Pakistán concluye que la  administración de hierro intravenoso aumenta la concentración de hemoglobina antes del parto. La investigiación se ha realizado con la participación de 600 mujeres embarazadas con deficiencia de hierro no anémica. Los resultados se han publicado en The Lancet Haematology.

Sigue leyendo
Diseñan un método rápido para analizar las propiedades saludables del comino negro
Córdoba | 17 de enero de 2026

Un equipo de investigación del Instituto de Agricultura Sostenible de Córdoba ha validado un sistema para estudiar semillas enteras en segundos, sin productos químicos y con similar fiabilidad que las técnicas tradicionales. El avance acorta el proceso de selección necesario para obtener variedades con mayor contenido en compuestos saludables.

Sigue leyendo
Los grandes dinosaurios y los mamuts eran más lentos de lo que se pensaba
Granada | 16 de enero de 2026

La Universidad de Granada participa en un nuevo estudio que redefine la capacidad de movimiento de los mayores animales terrestres que han existido y mejora la comprensión de su comportamiento ecológico. Los valores identificados sitúan a los grandes mamíferos extintos en rangos de velocidad comparables —e incluso inferiores— a los de la marcha atlética humana de élite, y muy lejos de las velocidades alcanzadas por los grandes velocistas.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido