VOLVER

Share

Un estudio de la UPO revela un nuevo papel clave de los astrocitos en la plasticidad cerebral

El Laboratorio de Neurociencia de la Universidad Pablo de Olavide demuestra que los astrocitos, a través de la molécula D-serina, son esenciales en el proceso de reorganización cerebral en los primeros meses de vida. Este estudio también tiene importantes implicaciones para el tratamiento de enfermedades neurodegenerativas como el Alzheimer donde la plasticidad sináptica se ve afectada.

Fuente: Universidad Pablo de Olavide


Sevilla |
22 de octubre de 2024

El equipo de investigación del Laboratorio de Neurociencia Celular y Plasticidad de la Universidad Pablo de Olavide (UPO) ha descubierto un nuevo mecanismo por el que los astrocitos, células multifuncionales y esenciales para el funcionamiento y la salud del sistema nervioso central, afectan a la plasticidad sináptica durante el desarrollo. Este hallazgo, publicado en la revista Journal of Neuroscience, destaca la importancia de una molécula liberada por estas células clave del cerebro, la D-serina, en la inducción de un tipo de plasticidad denominada Spike Timing-Dependent Long-Term Depression (t-LTD).

Yuniesky Andrade-Talavera y Antonio Rodríguez-Moreno, investigadores de la UPO.

El laboratorio, liderado por el catedrático de Fisiología Antonio Rodríguez-Moreno, muestra que esta forma de plasticidad sináptica ocurre gracias a la activación de receptores de endocannabinoides y la liberación de D-serina por los astrocitos. Este proceso se limita a un periodo crítico del desarrollo postnatal, en las primeras semanas de vida, cuando el cerebro se encuentra en plena reorganización y refinamiento de las conexiones entre neuronas.

El papel de la D-serina

La plasticidad cerebral es la capacidad del cerebro para adaptarse y modificar sus conexiones en respuesta a la experiencia. Esto permite, por ejemplo, aprender nuevas habilidades, como tocar un instrumento, aprender un idioma o ciertos pasos de baile. En particular, la plasticidad sináptica se refiere a los cambios en la fuerza de las conexiones neuronales, que pueden ser tanto un aumento (potenciación de larga duración – LTP) como una disminución (depresión de larga duración – LTD). Ambos procesos tienen funciones importantes, como eliminar conexiones innecesarias y ajustar la eficiencia del funcionamiento de las redes neuronales, y pueden ser fundamentales para el aprendizaje y la formación de recuerdos.

En estudios previos, este grupo de investigación ya había mostrado que la D-serina era clave para la plasticidad en una región cerebral llamada hipocampo, crucial para el aprendizaje y la memoria. En el nuevo trabajo, se ha descubierto que este proceso también es necesario en la corteza somatosensorial de ratones jóvenes. Los investigadores han revelado que la D-serina, liberada por los astrocitos, es esencial para la t-LTD en esa región del cerebro, sugiriendo que este mecanismo podría estar presente en otras áreas durante el desarrollo.

Impacto en la investigación 

Este estudio no solo aporta nuevos conocimientos sobre cómo los astrocitos contribuyen a la plasticidad cerebral, sino que también tiene importantes implicaciones para el tratamiento de enfermedades neurodegenerativas, como el Alzheimer, donde la plasticidad sináptica se ve afectada. Además, estos hallazgos podrían abrir nuevas vías para la recuperación de funciones cerebrales en personas con trastornos del neurodesarrollo o lesiones cerebrales.

El avance también añade un nuevo enfoque en el debate científico sobre el papel de la D-serina. Aunque durante años se aceptaba que los astrocitos eran la fuente principal de esta molécula, estudios recientes sugieren que también puede ser liberada por las neuronas. Este trabajo refuerza la idea de que los astrocitos desempeñan un papel crucial en la plasticidad cerebral.

El estudio de la plasticidad sináptica y el papel de los astrocitos no solo tiene implicaciones científicas, sino que también podría influir en el diseño de políticas educativas basadas en el entendimiento de cómo el cerebro aprende y se adapta.

Referencia:

Yuniesky Andrade-Talavera, Joaquín Sánchez-Gómez, Heriberto Coatl-Cuaya and Antonio Rodríguez-Moreno. ‘Developmental spike timing-dependent long-term depression requires astrocyte D-serine at L2/3-L2/3 synapses of the mouse somatosensory cortex’Journal of Neuroscience. 15 October 2024.


Share

Últimas publicaciones

Activar una vía de defensa mitocondrial revierte el daño celular en modelos de encefalopatía
Sevilla | 08 de julio de 2025

El grupo de investigación ‘Desarrollo y enfermedades musculares’ del Centro Andaluz de Biología del Desarrollo logra corregir alteraciones fisiopatológicas en modelos celulares de esta grave enfermedad neurodegenerativa mediante una combinación de compuestos comerciales.

Sigue leyendo
Un estudio de la UCO señala que el turista que realiza ‘free tours’ es una mujer universitaria de renta media
Córdoba | 08 de julio de 2025

Un estudio de la Universidad de Córdoba explora el perfil sociodemográfico de las personas atraídas por estas populares rutas, caracterizadas por no disponer de una tarifa fija establecida, y analiza las motivaciones que les impulsan a participar en ellas. En cuanto a las principales motivaciones que llevan a los turistas a optar por este tipo de experiencias, el trabajo destaca la posibilidad de conocer barrios históricos, el propio recorrido y la amabilidad del guía.

Sigue leyendo
Crean un acelerador de modelos de inteligencia artificial hasta un 70% más rápido con menos datos
Cádiz | 05 de julio de 2025

Un equipo de investigación de la Universidad de Cádiz ha creado REDIBAGG, un método que acelera el entrenamiento de modelos de inteligencia artificial hasta un 70%, al utilizar menos datos pero sin perder precisión. La técnica tiene potencial para analizar grandes volúmenes de información en campos tan diversos como la medicina, la industria o las finanzas.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido