VOLVER

Share

Un modelo matemático pionero considera casos no detectados para simular el comportamiento del SARS-CoV-2

Un equipo de investigación liderado por la Universidad Complutense de Madrid con participación de la Universidad de Almería ha desarrollado un modelo matemático que permite estimar el impacto de las personas infectadas pero no detectadas y de las diversas medidas de control sobre la enfermedad. Esta herramienta ayudaría en la toma de decisiones ya que permite estimar, por ejemplo, el número de individuos que requerirían futuras hospitalizaciones.

Fuente: Universidad de Almería


Almería |
10 de junio de 2020

Un equipo de investigadores del grupo MOMAT de la Universidad Complutense de Madrid y de la Universidad de Almería ha diseñado un modelo matemático que permite simular el comportamiento del SARS-CoV-2 en un territorio teniendo en cuenta, como novedad, los casos no detectados, las hospitalizaciones y las medidas de control (como por ejemplo, medidas de distanciamiento entre personas) o la relajación de éstas.

El modelo matemático, llamado el θ-SEIHRD, permite estimar el impacto de las personas infectadas pero no detectadas y de las diversas medidas de control sobre la enfermedad.

El equipo liderado por Ángel Manuel Ramos, director del Instituto de Matemática Interdisciplinar (IMI) de la UCM, ha desarrollado una forma novedosa de incluir en el estudio los casos no detectados, es decir, a las personas que han tenido el virus pero que no han sido contabilizadas como contagiados al no haberles hecho la prueba (por ser, por ejemplo, asintomáticos).

“El modelo trata de reproducir los mecanismos biológicos y sociales de la epidemia, con sus características particulares, y el impacto de las medidas de control”, apunta Benjamin Ivorra, quien lleva ya una decena de años en el grupo de investigación.

La herramienta, presentada en Communications in Nonlinear Science and Numerical Simulation, recibe el nombre de θ-SEIHRD y, a diferencia de modelos tradicionales como SIR o SEIR, incorpora la fracción de casos detectados entre el total de casos reales (detectados y sin detectar), permitiendo así estimar el impacto de los casos asintomáticos en la pandemia.

Al simular el comportamiento de contagios, hospitalizaciones y fallecimientos, el modelo “permite evaluar la eficiencia de las medidas de control y puede servir como herramienta de toma de decisión en el momento de diseñar planes de actuación contra el COVID-19, estimando, por ejemplo, el número de personas que se prevé que estén hospitalizadas o la importancia de aumentar la capacidad de detección para controlar la epidemia”, destaca Miriam R. Ferrández de la Universidad de Almería.

La aplicación en España tendrá que esperar

El θ-SEIHRD se trata de una adaptación de un modelo anterior diseñado para el virus del Ébola y que se ha ajustado a las características de la nueva enfermedad COVID-19. Los datos utilizados en la investigación son los correspondientes a China, si bien los expertos aseguran que la herramienta puede utilizarse en cualquier territorio, aplicando datos válidos correspondientes.

“La calidad de los datos es fundamental para proporcionar buenas estimaciones. Predecir la evolución de la enfermedad a largo plazo en las etapas tempranas del brote es una tarea muy compleja que conlleva muchas incertidumbres”, recuerda María Vela-Pérez, investigadora del IMI, reconociendo que en estos trabajos se han encontrado con dificultades por la falta de precisión de algunos datos y los errores que pueden provocar estos.

El grupo de investigación colabora, desde el inicio de la pandemia, con diversas entidades y grupos de investigación españoles e internacionales para aplicar el modelo al caso de España, de sus comunidades autónomas y de algunos otros países.

“Sin embargo, de momento, los datos oficiales de España a nivel global no tienen la calidad suficiente para poder aplicar el modelo a nuestro país”, resalta A.M. Ramos.

Por último, los investigadores reivindican el papel fundamental de las matemáticas en la pandemia, ya que proporcionan resultados a nivel cuantitativo (para estimar la evolución de un brote) y cualitativo (por ejemplo, para diseñar planes de control).


Share

Últimas publicaciones

Identifican las áreas cerebrales que se activan para detectar la desinformación
Jaén | 15 de octubre de 2025

Un equipo de investigación de la Universidad de Jaén halla, mediante encefalograma, que las regiones del cerebro relacionadas con el aprendizaje y la memoria, así como la vinculada a la toma de decisiones se ‘despiertan’ al visionar una campaña institucional sobre información maliciosa. Esta acción informativa actúa como una ‘vacuna’ que alerta a los usuarios de que apliquen sus ‘defensas cognitivas’ para analizar los mensajes de forma crítica. Así se reduce la tendencia a compartir y creer en elementos de las redes sociales.

Sigue leyendo
Un equipo de investigadores identifican una enzima clave en la Atrofia Muscular Espinal
Sevilla | 14 de octubre de 2025

Un estudio interdisciplinar de la Universidad Pablo de Olavide y la Universidad de Lleida avanza en el conocimiento de la Atrofia Muscular Espinal (AME), considerada como una enfermedad rara que afecta a uno de cada ocho mil nacimientos y que tiene la tasa de mortalidad más alta de todas las enfermedades hereditarias. El equipo de investigación ha propuesto un fármaco ya existente como terapia.

Sigue leyendo
Desarrollan un método que cuantifica la evaporación de agua en los embalses andaluces y clasifica su eficiencia
Cádiz | 11 de octubre de 2025

Un equipo de investigación de la Universidad de Cádiz ha diseñado un sistema que evalúa el volumen mensual de agua que se pierde evaporado en las presas andaluzas y lo han aplicado a 76 de ellas, cubriendo así todas las demarcaciones hidrográficas de Andalucía. Los expertos han combinado datos institucionales y toma de muestras in situ para además clasificar su eficiencia tras analizar factores morfológicos (extensión y profundidad del embalse), hidrológicos y de gestión.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido