Utilizan la inteligencia artificial para mejorar la resolución de imágenes de resonancia magnética del cerebro
El método diseñado por investigadores de la Universidad de Málaga permite detectar patologías con mayor precisión y nitidez, sin necesidad de pruebas complementarias. Se trata de un nuevo modelo que ha permitido que las imágenes pasen de baja resolución a alta, sin distorsionar las estructuras cerebrales de los pacientes, utilizando una red neuronal artificial profunda –modelo inspirado en el funcionamiento del cerebro humano- que ‘aprende’ este proceso.
Fuente: Universidad de Málaga
Investigadores del Grupo ICAI -Inteligencia Computacional y Análisis de Imágenes- de la Universidad de Málaga han diseñado un método inédito capaz de mejorar las imágenes del cerebro obtenidas por resonancia magnética usando la inteligencia artificial.

Este método permite detectar patologías con mayor precisión y nitidez, sin necesidad de pruebas complementarias.
Se trata de un nuevo modelo que ha permitido que las imágenes pasen de baja resolución a alta, sin distorsionar las estructuras cerebrales de los pacientes, utilizando una red neuronal artificial profunda –modelo inspirado en el funcionamiento del cerebro humano- que ‘aprende’ este proceso.
“El aprendizaje profundo está basado en redes neuronales muy extensas, con lo que su capacidad para aprender lo es también, alcanzando la complejidad y abstracción de un cerebro”, explica el investigador Karl Thurnhofer, autor principal de este estudio, que señala que gracias a esta técnica se pueden realizar tareas de identificación por sí mismas, sin supervisión, de las que ni el ojo humano sería capaz.
Este avance investigador ha sido publicado por la revista científica ‘Neurocomputing’, que recoge como el algoritmo desarrollado en la UMA obtiene resultados de mayor precisión en menos tiempo, con claros beneficios para los pacientes. “Hasta ahora la adquisición de imágenes cerebrales de calidad dependían del tiempo que el paciente estuviera inmovilizado en el escáner, con nuestro método el procesamiento de la imagen se hace posteriormente en el ordenador”, aclara Thurnhofer.
Según los expertos, los resultados permitirán a los especialistas identificar de forma más nítida y precisa patologías relacionadas con el cerebro como lesiones físicas, cánceres o trastornos del lenguaje, entre otras, ya que los detalles de las imágenes son más finos, evitando así tener que recurrir a pruebas complementarias ante diagnósticos dudosos.
El Grupo ICAI de la UMA, que dirige el catedrático Ezequiel López, también autor de este trabajo, es hoy referente en neurocomputación, aprendizaje computacional e inteligencia artificial. Los profesores del Departamento de Lenguajes y Ciencias de la Computación Enrique Domínguez y Rafael Luque, así como la investigadora Núria Roé-Vellvé, también han participado en el estudio.
Últimas publicaciones
Un equipo de investigación de la Estación Experimental el Zaidín de Granada (CSIC), del Centro Tecnológico EnergyLab y de la Universidad de Copenhague ha aplicado una solución a partir de residuos vegetales para reducir la liberación de sustancias nocivas de los desechos de la ganadería porcina. El hallazgo ofrece una alternativa al uso de productos químicos agresivos y abre la puerta a nuevas formas de gestionar el estiércol con menor impacto ambiental.
Un equipo de investigación de la Universidad de Sevilla ha confirmado que este aceite reduce las alteraciones del ojo provocadas por los niveles elevados de la presión sanguínea. Los resultados del estudio con células y animales validan su potencial uso terapéutico en enfermedades oftálmicas.
Un equipo de investigación de la Universidad de Huelva ha obtenido un tipo de celulosa que mejora las propiedades de las grasas industriales y logra pavimentos más resistentes al calor y al desgaste. Así, modifican un residuo agrícola y lo transforman en un material versátil, ecológico y muy útil para el mercado.