VOLVER

Share

Utilizan la inteligencia artificial para mejorar la resolución de imágenes de resonancia magnética del cerebro

El método diseñado por investigadores de la Universidad de Málaga permite detectar patologías con mayor precisión y nitidez, sin necesidad de pruebas complementarias. Se trata de un nuevo modelo que ha permitido que las imágenes pasen de baja resolución a alta, sin distorsionar las estructuras cerebrales de los pacientes, utilizando una red neuronal artificial profunda –modelo inspirado en el funcionamiento del cerebro humano- que ‘aprende’ este proceso.

Fuente: Universidad de Málaga


Málaga |
16 de enero de 2020

Investigadores del Grupo ICAI -Inteligencia Computacional y Análisis de Imágenes- de la Universidad de Málaga han diseñado un método inédito capaz de mejorar las imágenes del cerebro obtenidas por resonancia magnética usando la inteligencia artificial.

Este método permite detectar patologías con mayor precisión y nitidez, sin necesidad de pruebas complementarias.

Se trata de un nuevo modelo que ha permitido que las imágenes pasen de baja resolución a alta, sin distorsionar las estructuras cerebrales de los pacientes, utilizando una red neuronal artificial profunda –modelo inspirado en el funcionamiento del cerebro humano- que ‘aprende’ este proceso.

“El aprendizaje profundo está basado en redes neuronales muy extensas, con lo que su capacidad para aprender lo es también, alcanzando la complejidad y abstracción de un cerebro”, explica el investigador Karl Thurnhofer, autor principal de este estudio, que señala que gracias a esta técnica se pueden realizar tareas de identificación por sí mismas, sin supervisión, de las que ni el ojo humano sería capaz.

Karl Thurnhofer, autor principal de este estudio.

Este avance investigador ha sido publicado por la revista científica ‘Neurocomputing’, que recoge como el algoritmo desarrollado en la UMA obtiene resultados de mayor precisión en menos tiempo, con claros beneficios para los pacientes. “Hasta ahora la adquisición de imágenes cerebrales de calidad dependían del tiempo que el paciente estuviera inmovilizado en el escáner, con nuestro método el procesamiento de la imagen se hace posteriormente en el ordenador”, aclara Thurnhofer.

Según los expertos, los resultados permitirán a los especialistas identificar de forma más nítida y precisa patologías relacionadas con el cerebro como lesiones físicas, cánceres o trastornos del lenguaje, entre otras, ya que los detalles de las imágenes son más finos, evitando así tener que recurrir a pruebas complementarias ante diagnósticos dudosos.

 

El Grupo ICAI de la UMA, que dirige el catedrático Ezequiel López, también autor de este trabajo, es hoy referente en neurocomputación, aprendizaje computacional e inteligencia artificial. Los profesores del Departamento de Lenguajes y Ciencias de la Computación Enrique Domínguez y Rafael Luque, así como la investigadora Núria Roé-Vellvé, también han participado en el estudio.


Share

Últimas publicaciones

Un equipo de la Escuela de Telecomunicación de la UMA desarrolla la próxima generación de robots sociales de asistencia
Málaga | 22 de enero de 2025

Los científicos han probado cómo un robot instalado en la residencia 'Vitalia Teatinos' es capaz de adecuar su comportamiento a cada persona y contexto, consiguiendo que éste ande en la sala común de la residencia más de 40 kilómetros con tareas múltiples como recoger las opciones de menú semanal o participar en sesiones de terapia musical. La investigación se ha desarrollado en el marco del proyecto CAMPERO.

Sigue leyendo
Reconstruyen en imágenes 3D el puente de hierro más largo de España situado en Granada
Jaén | 21 de enero de 2025

El trabajo del Puente del Hacho, situado en la provincia de Granada y atribuido a la escuela de Eiffel, ha sido realizado por los grupos de investigación ‘Tecnologías Avanzadas en Ingeniería Civil: Construcción y Transporte Terrestre’ e ‘Informática Gráfica y Geomática’ de la Universidad de Jaén. Ha contado además con la participación de alumnado de 4º Curso del Grado de Ingeniería Civil de la Escuela Politécnica Superior de Linares.

Sigue leyendo
Investigadores de la UCO mejoran la visión artificial de máquinas en condiciones de poca iluminación
Córdoba | 21 de enero de 2025

Un novedoso modelo desarrollado por la Universidad de Córdoba usa redes neuronales para optimizar la decodificación de los marcadores que usan las máquinas para detectar y conocer la ubicación de los objetos. Tanto los datos generados de manera artificial para entrenar el modelo como los de situaciones de iluminación desfavorable en el mundo real están disponibles en abierto, así el sistema podría aplicarse en la actualidad.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido