VOLVER

Share

Utilizan la inteligencia artificial para mejorar la resolución de imágenes de resonancia magnética del cerebro

El método diseñado por investigadores de la Universidad de Málaga permite detectar patologías con mayor precisión y nitidez, sin necesidad de pruebas complementarias. Se trata de un nuevo modelo que ha permitido que las imágenes pasen de baja resolución a alta, sin distorsionar las estructuras cerebrales de los pacientes, utilizando una red neuronal artificial profunda –modelo inspirado en el funcionamiento del cerebro humano- que ‘aprende’ este proceso.

Fuente: Universidad de Málaga


Málaga |
16 de enero de 2020

Investigadores del Grupo ICAI -Inteligencia Computacional y Análisis de Imágenes- de la Universidad de Málaga han diseñado un método inédito capaz de mejorar las imágenes del cerebro obtenidas por resonancia magnética usando la inteligencia artificial.

Este método permite detectar patologías con mayor precisión y nitidez, sin necesidad de pruebas complementarias.

Se trata de un nuevo modelo que ha permitido que las imágenes pasen de baja resolución a alta, sin distorsionar las estructuras cerebrales de los pacientes, utilizando una red neuronal artificial profunda –modelo inspirado en el funcionamiento del cerebro humano- que ‘aprende’ este proceso.

“El aprendizaje profundo está basado en redes neuronales muy extensas, con lo que su capacidad para aprender lo es también, alcanzando la complejidad y abstracción de un cerebro”, explica el investigador Karl Thurnhofer, autor principal de este estudio, que señala que gracias a esta técnica se pueden realizar tareas de identificación por sí mismas, sin supervisión, de las que ni el ojo humano sería capaz.

Karl Thurnhofer, autor principal de este estudio.

Este avance investigador ha sido publicado por la revista científica ‘Neurocomputing’, que recoge como el algoritmo desarrollado en la UMA obtiene resultados de mayor precisión en menos tiempo, con claros beneficios para los pacientes. “Hasta ahora la adquisición de imágenes cerebrales de calidad dependían del tiempo que el paciente estuviera inmovilizado en el escáner, con nuestro método el procesamiento de la imagen se hace posteriormente en el ordenador”, aclara Thurnhofer.

Según los expertos, los resultados permitirán a los especialistas identificar de forma más nítida y precisa patologías relacionadas con el cerebro como lesiones físicas, cánceres o trastornos del lenguaje, entre otras, ya que los detalles de las imágenes son más finos, evitando así tener que recurrir a pruebas complementarias ante diagnósticos dudosos.

 

El Grupo ICAI de la UMA, que dirige el catedrático Ezequiel López, también autor de este trabajo, es hoy referente en neurocomputación, aprendizaje computacional e inteligencia artificial. Los profesores del Departamento de Lenguajes y Ciencias de la Computación Enrique Domínguez y Rafael Luque, así como la investigadora Núria Roé-Vellvé, también han participado en el estudio.


Share

Últimas publicaciones

La exposición `Paseo Matemático al-Ándalus´ de la Fundación Descubre regresa a Túnez de la mano de la Embajada de España y el Instituto Cervantes
Túnez | 01 de diciembre de 2025

La Académie diplomatique internationale de Tunis ha acogido la inauguración de la exposición ‘Paseo Matemático al-Ándalus’ de la Fundación Descubre.

Sigue leyendo
Desarrollan un sistema inteligente que detecta anomalías cardíacas en los electrocardiogramas para anticipar el diagnóstico
Málaga | 30 de noviembre de 2025

Un equipo de investigación de la Universidad de Málaga diseña una plataforma automática que identifica irregularidades en la actividad eléctrica del corazón compatibles con afecciones cardíacas como arritmias, isquemia o infarto de miocardio. La combinación de la detección automatizada con la revisión de los sanitarios podría mejorar la precisión diagnóstica en los pacientes.

Sigue leyendo
Plantean un nuevo impuesto al carbono para que España cumpla sus objetivos sin frenar el crecimiento económico
Sevilla | 27 de noviembre de 2025

El estudio, realizado por investigadores del departamento de Economía de la Universidad Loyola y de la Universidad Autónoma de Barcelona, identifica el nivel impositivo necesario para alcanzar los objetivos de reducción de emisiones de España para 2030. La investigación analiza los efectos de aplicar un impuesto a las emisiones de carbono en España y concluye que una buena gestión de los ingresos puede reducir la contaminación y favorecer el empleo.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido