VOLVER

Share

Las consecuencias de una mala ‘digestión’ celular en el párkinson

Fuente: Carolina Moya / Fundación Descubre


11 de abril de 2016
Grupo en el laboratorio de cultivos celulares. De izquierda a derecha, de pie, aparecen María Romo, Sabine Hilfiker, Jorge Rivera, Pilar Rivero, Antonio Lara e Irene López. Sentadas, de  izquierda a derecha: Marian Blanca y Elena Fernández.

Grupo en el laboratorio de cultivos celulares. De izquierda a derecha, de pie, aparecen María Romo, Sabine Hilfiker, Jorge Rivera, Pilar Rivero, Antonio Lara e Irene López. Sentadas, de
izquierda a derecha: Marian Blanca y Elena Fernández.

Investigadores del laboratorio de Neurobiología celular del Instituto de Parasitología y Biomedicina López-Neyra (CSIC) en Granada han descubierto que el gen LRRK2 bloquea la autofagia, es decir, el proceso por el que las células eliminan componentes que, si se acumulan, provocan la muerte neuronal asociada al párkinson. El objetivo de los expertos es conocer cómo actúa el gen en esa ruta de tránsito de compuestos, para dirigirse a ella con fármacos más selectivos.

Según apuntan los científicos andaluces, las causas del Parkinson son aún desconocidas, aunque existe un 10% de casos con un origen genético (o hereditario), debido a mutaciones en una serie de genes. “Nuestro laboratorio investiga los mecanismos moleculares mediante los cuales LRRK2 provoca párkinson, con el objetivo final de hallar fármacos eficaces frente a la enfermedad, ya que, en la actualidad, los tratamientos se limitan a aliviar los síntomas, pero no evitan su progresión”, explica a la Fundación Descubre la investigadora Pilar Rivero, del Instituto de Parasitología y Biomedicina López-Neyra.

Los expertos han observado que uno de los rasgos característicos de la enfermedad de Parkinson, aparte de la muerte de neuronas, es la presencia de proteínas anómalas que, en circunstancias normales, deberían ser desechadas y que se acumulan. Esto apunta a cambios en el proceso de eliminación de residuos denominado ruta autofágica, que podría compararse con el ‘aparato digestivo’ de la célula. “Se han detectado alteraciones en la autofagia en cerebros postmortem de pacientes con la enfermedad. Si no funciona correctamente no se eliminarán componentes celulares que deberían ser evacuados y su acumulación resultará dañina, llevando finalmente a la muerte celular”, apunta Rivero.

La investigadora Pilar Rivero trabajando con células en la cabina de  cultivos celulares.

La investigadora Pilar Rivero trabajando con células en la cabina de cultivos celulares.

Dada la relación de la autofagia con la enfermedad, los investigadores han estudiado cómo actúa un gen asociado también al párkinson, el LRRK2. De esta forma, en el estudio ‘Targeting the Autophagy/Lysosomal Degradation Pathway in Parkinson´s Disease’ publicado en la revista Current Neuropharmacology  han descubierto que éste bloquea la autofagia, es decir, la “digestión celular”, en un orgánulo concreto que podría definirse como el “estómago”, el lisosoma, donde tiene lugar la degradación de materiales de desecho.

El conocimiento de cómo funciona esta ruta abre la puerta al diseño de fármacos que activen la autofagia y, por tanto, esa eliminación de sustancias perjudiciales. “En este enfoque terapéutico, diversos compuestos que incrementan la autofagia han resultado ya beneficiosos en modelos celulares y animales que reproducen la enfermedad de Parkinson”, adelanta Rivero.

Sin embargo, los expertos se muestran cautos, ya que todavía quedan cuestiones por resolver. Por un lado, la mayoría de estos fármacos actúan sobre otras rutas, lo que conllevaría efectos secundarios no deseados. Por otra parte, un exceso de autofagia sería también negativo para la célula. “Establecer la dosis exacta que tenga el efecto deseado supone aún un reto”, reconoce.

Ensayos con células de piel

Los investigadores han utilizado modelos celulares para estudiar los efectos de LRRK2 sobre las rutas de interés. En concreto, células de la piel donadas por pacientes de párkinson que contienen mutaciones del gen.

El siguiente paso, será reproducir estos resultados en el tipo de células implicadas en el párkinson: las neuronas dopaminérgicas. “Supone el modelo celular más real, ya que son las células más afectadas. Con las células de la piel o fibroblastos tenemos el contexto genético, pero no el tipo de célula concreta afectada, que son las neuronas”, aclara.

La investigadora Elena Fernández observando imágenes de células tomadas con el microscopio para estudiar el efecto de LRRK2 sobre ellas.

La investigadora Elena Fernández observando imágenes de células tomadas con el microscopio para estudiar el efecto de LRRK2 sobre ellas.

De ahí que los expertos avancen ya en técnicas de reprogramación celular. “El objetivo sería obtener células pluripotentes inducidas a partir de células de la piel de pacientes de párkinson y convertirlas a su vez en neuronas dopaminérgicas”, adelanta.

Consorcio internacional

El laboratorio de Neurobiología celular del Instituto de Parasitología y Biomedicina López-Neyra, liderado por la investigadora del CSIC Sabine Hilfiker, forma parte de un consorcio de la Fundación Michael J. Fox, en el que científicos de todo el mundo que trabajan en párkinson comparten aproximaciones y conocimiento con el objetivo de desarrollar tratamientos efectivos. Supone un trabajo colaborativo para avanzar en el descubrimiento de las causas de una enfermedad crónica, neurodegenerativa e invalidante, que afecta a más de 160.000 personas en España. De ellas, el 10% presenta la enfermedad en estado avanzado, según la Federación Española de Párkinson.

Referencia:

Rivero-Ríos P , Madero-Pérez J , Fernández B , Hilfiker S . ‘Targeting the Autophagy/Lysosomal Degradation Pathway in Parkinson´s Disease’. Current Neuropharmacology . 2016;14(3):238-49.

Imágenes:

Grupo en el laboratorio de cultivos celulares. De izquierda a derecha, de pie, aparecen María Romo, Sabine Hilfiker, Jorge Rivera, Pilar Rivero, Antonio Lara e Irene López. Sentadas, de izquierda a derecha: Marian Blanca y Elena Fernández.

https://www.flickr.com/photos/fundaciondescubre/26297997971/in/dateposted-public/

La investigadora Pilar Rivero trabajando con células en la cabina de  cultivos celulares.

https://www.flickr.com/photos/fundaciondescubre/26297998631/in/dateposted-public/

La investigadora Elena Fernández observando imágenes de células tomadas con el microscopio para estudiar el efecto de LRRK2 sobre ellas.

https://www.flickr.com/photos/fundaciondescubre/26338295316/in/dateposted-public/

Los técnicos de laboratorio Irene López y Jorge Rivera pipeteando, es decir, cogiendo volúmenes concretos de soluciones líquidas.

https://www.flickr.com/photos/fundaciondescubre/26364233865/in/dateposted-public/

Más información:

FUNDACIÓN DESCUBRE

Departamento de Comunicación

Teléfono: 954239422

e-mail: comunicacion@fundaciondescubre.es


Share

Últimas publicaciones

Un equipo de la Escuela de Telecomunicación de la UMA desarrolla la próxima generación de robots sociales de asistencia
Málaga | 22 de enero de 2025

Los científicos han probado cómo un robot instalado en la residencia 'Vitalia Teatinos' es capaz de adecuar su comportamiento a cada persona y contexto, consiguiendo que éste ande en la sala común de la residencia más de 40 kilómetros con tareas múltiples como recoger las opciones de menú semanal o participar en sesiones de terapia musical. La investigación se ha desarrollado en el marco del proyecto CAMPERO.

Sigue leyendo
Reconstruyen en imágenes 3D el puente de hierro más largo de España situado en Granada
Jaén | 21 de enero de 2025

El trabajo del Puente del Hacho, situado en la provincia de Granada y atribuido a la escuela de Eiffel, ha sido realizado por los grupos de investigación ‘Tecnologías Avanzadas en Ingeniería Civil: Construcción y Transporte Terrestre’ e ‘Informática Gráfica y Geomática’ de la Universidad de Jaén. Ha contado además con la participación de alumnado de 4º Curso del Grado de Ingeniería Civil de la Escuela Politécnica Superior de Linares.

Sigue leyendo
Investigadores de la UCO mejoran la visión artificial de máquinas en condiciones de poca iluminación
Córdoba | 21 de enero de 2025

Un novedoso modelo desarrollado por la Universidad de Córdoba usa redes neuronales para optimizar la decodificación de los marcadores que usan las máquinas para detectar y conocer la ubicación de los objetos. Tanto los datos generados de manera artificial para entrenar el modelo como los de situaciones de iluminación desfavorable en el mundo real están disponibles en abierto, así el sistema podría aplicarse en la actualidad.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido