Analizan los parámetros de laboratorio más relevantes para predecir la mortalidad por Covid-19 mediante técnicas de inteligencia artificial
El aprendizaje automático es una rama de la inteligencia artificial que permite que las máquinas sean capaces de identificar patrones en los datos y hacer predicciones. En este sentido, los expertos de la Universidad de Huelva han desarrollado un modelo para predecir la mortalidad de pacientes diagnosticados con COVID-19, empleando fundamentalmente los datos de laboratorio provenientes de las pruebas clínicas realizadas durante su hospitalización.
Fuente: Universidad de Huelva
Profesores del Departamento de Tecnologías de la Información de la Escuela Técnica Superior de Ingeniería de la Universidad de Huelva han publicado un estudio que analiza la mortalidad de pacientes diagnosticados con COVID-19 mediante el uso de técnicas de aprendizaje automático. El aprendizaje automático es una rama de la inteligencia artificial que permite que las máquinas sean capaces de identificar patrones en los datos y hacer predicciones. Los autores han desarrollado un modelo para predecir la mortalidad de pacientes diagnosticados con COVID-19, empleando fundamentalmente los datos de laboratorio provenientes de las pruebas clínicas realizadas durante su hospitalización.
El trabajo, titulado ‘Machine Learning Applied to Clinical Laboratory Data in Spain for COVID-19 Outcome Prediction: Model Development and Validation’, ha sido publicado en la revista Journal of Medical Internet Research, con un factor de impacto de 5.03 en el cuartil Q1 del Journal Citation Report (JCR) en las categorías Medical Informatics y Health Care Sciences & Services. Puede consultarse en https://doi.org/10.2196/26211.
Los autores del estudio han sido Juan L. Domínguez Olmedo, Jacinto Mata Vázquez y Victoria Pachón Álvarez, pertenecientes al Grupo de Investigación ‘Ingeniería de la Información y el Conocimiento’, en colaboración con Álvaro Gragera Martínez, experto del Hospital Juan Ramón Jiménez.

Los autores del estudio han sido Juan L. Domínguez Olmedo, Jacinto Mata Vázquez y Victoria Pachón Álvarez, pertenecientes al Grupo de Investigación ‘Ingeniería de la Información y el Conocimiento’.
Para la elaboración de este estudio se ha utilizado una muestra de historias clínicas anonimizadas proporcionada por un grupo hospitalario privado español (HM Hospitales). Concretamente, los datos provenían de 1.823 pacientes que habían sido hospitalizados con diagnóstico de COVID-19, y de los cuáles el 14.4% había fallecido.
Resultados obtenidos
El estudio partió de la idea de entender y predecir la severidad de la COVID-19 en los pacientes ingresados en el hospital, empleando para ello parámetros bioquímicos y hematológicos, además del sexo y la edad de los pacientes.
Como refleja el estudio, una de las causas más importantes de mortalidad en estos pacientes es el síndrome inflamatorio, relacionado con parámetros como la proteína C-reactiva o la enzima lactato deshidrogenasa (LDH). Otro factor importante son los trastornos de coagulación (trombos), identificables mediante ciertos parámetros sanguíneos. Si la edad del paciente se une a los parámetros bioquímicos y hematológicos, “la predicción de la severidad de la enfermedad resulta mucho más exacta”, se resalta en el estudio.
En este trabajo también se realiza un análisis de la importancia de las variables en el modelo. Entre las 32 variables empleadas, las más relevantes para la predicción fueron: el nivel de la enzima LDH, el nivel de la proteína C-reactiva, el porcentaje de neutrófilos, el nivel de urea, la edad y el porcentaje de eosinófilos.
Tal y como indican los autores del estudio, “no es fácil establecer criterios estrictos de mortalidad en pacientes con COVID-19, pues aún no se conoce exactamente el comportamiento del virus en el organismo. Seguramente coexisten factores inmunológicos, genéticos y ambientales, que relacionados con parámetros de laboratorio pueden permitir entender mejor dicha mortalidad”. No obstante, gracias a técnicas de inteligencia artificial como la desarrollada por los autores, “se pueden obtener modelos capaces de predecir la severidad de la enfermedad según las características particulares de cada paciente”, explican los investigadores de la UHU.
Últimas publicaciones
Un equipo de investigación andaluz junto con expertos de Reino Unido comprueba que el contenido en compuestos antioxidantes de estos organismos marinos mitiga la emisión de metano hasta un 40%, en una digestión simulada en rumiantes.
Sigue leyendoUn equipo de investigación del Instituto de Agricultura Sostenible de Córdoba (IAS-CSIC) ha analizado más de un centenar de muestras de quinoa cultivada en Andalucía y Extremadura durante dos años. El estudio ha demostrado que tanto el contenido de antioxidantes como grasas saludables depende en gran medida de la genética de la planta, lo que permitirá seleccionar aquellas variedades con mayor valor nutricional que mejor se adapten al clima del sur de España.
Un equipo de investigación de la Estación Experimental el Zaidín de Granada (CSIC), del Centro Tecnológico EnergyLab y de la Universidad de Copenhague ha aplicado una solución a partir de residuos vegetales para reducir la liberación de sustancias nocivas de los desechos de la ganadería porcina. El hallazgo ofrece una alternativa al uso de productos químicos agresivos y abre la puerta a nuevas formas de gestionar el estiércol con menor impacto ambiental.