VOLVER

Share

Analizan los parámetros de laboratorio más relevantes para predecir la mortalidad por Covid-19 mediante técnicas de inteligencia artificial

El aprendizaje automático es una rama de la inteligencia artificial que permite que las máquinas sean capaces de identificar patrones en los datos y hacer predicciones. En este sentido, los expertos de la Universidad de Huelva han desarrollado un modelo para predecir la mortalidad de pacientes diagnosticados con COVID-19, empleando fundamentalmente los datos de laboratorio provenientes de las pruebas clínicas realizadas durante su hospitalización.

Fuente: Universidad de Huelva


Huelva |
15 de junio de 2021

Profesores del Departamento de Tecnologías de la Información de la Escuela Técnica Superior de Ingeniería de la Universidad de Huelva han publicado un estudio que analiza la mortalidad de pacientes diagnosticados con COVID-19 mediante el uso de técnicas de aprendizaje automático. El aprendizaje automático es una rama de la inteligencia artificial que permite que las máquinas sean capaces de identificar patrones en los datos y hacer predicciones. Los autores han desarrollado un modelo para predecir la mortalidad de pacientes diagnosticados con COVID-19, empleando fundamentalmente los datos de laboratorio provenientes de las pruebas clínicas realizadas durante su hospitalización.

El trabajo, titulado ‘Machine Learning Applied to Clinical Laboratory Data in Spain for COVID-19 Outcome Prediction: Model Development and Validation’, ha sido publicado en la revista Journal of Medical Internet Research, con un factor de impacto de 5.03 en el cuartil Q1 del Journal Citation Report (JCR) en las categorías Medical Informatics y Health Care Sciences & Services. Puede consultarse en https://doi.org/10.2196/26211.

Los autores del estudio han sido Juan L. Domínguez Olmedo, Jacinto Mata Vázquez y Victoria Pachón Álvarez, pertenecientes al Grupo de Investigación ‘Ingeniería de la Información y el Conocimiento’, en colaboración con Álvaro Gragera Martínez, experto del Hospital Juan Ramón Jiménez.

Los autores del estudio han sido Juan L. Domínguez Olmedo, Jacinto Mata Vázquez y Victoria Pachón Álvarez, pertenecientes al Grupo de Investigación ‘Ingeniería de la Información y el Conocimiento’.

Para la elaboración de este estudio se ha utilizado una muestra de historias clínicas anonimizadas proporcionada por un grupo hospitalario privado español (HM Hospitales). Concretamente, los datos provenían de 1.823 pacientes que habían sido hospitalizados con diagnóstico de COVID-19, y de los cuáles el 14.4% había fallecido.

Resultados obtenidos

El estudio partió de la idea de entender y predecir la severidad de la COVID-19 en los pacientes ingresados en el hospital, empleando para ello parámetros bioquímicos y hematológicos, además del sexo y la edad de los pacientes.

Como refleja el estudio, una de las causas más importantes de mortalidad en estos pacientes es el síndrome inflamatorio, relacionado con parámetros como la proteína C-reactiva o la enzima lactato deshidrogenasa (LDH). Otro factor importante son los trastornos de coagulación (trombos), identificables mediante ciertos parámetros sanguíneos. Si la edad del paciente se une a los parámetros bioquímicos y hematológicos, “la predicción de la severidad de la enfermedad resulta mucho más exacta”, se resalta en el estudio.

En este trabajo también se realiza un análisis de la importancia de las variables en el modelo. Entre las 32 variables empleadas, las más relevantes para la predicción fueron: el nivel de la enzima LDH, el nivel de la proteína C-reactiva, el porcentaje de neutrófilos, el nivel de urea, la edad y el porcentaje de eosinófilos.

Tal y como indican los autores del estudio, “no es fácil establecer criterios estrictos de mortalidad en pacientes con COVID-19, pues aún no se conoce exactamente el comportamiento del virus en el organismo. Seguramente coexisten factores inmunológicos, genéticos y ambientales, que relacionados con parámetros de laboratorio pueden permitir entender mejor dicha mortalidad”. No obstante, gracias a técnicas de inteligencia artificial como la desarrollada por los autores, “se pueden obtener modelos capaces de predecir la severidad de la enfermedad según las características particulares de cada paciente”, explican los investigadores de la UHU.


Share

Últimas publicaciones

Aplican la ciencia ciudadana para reducir el tiempo de uso del móvil en jóvenes andaluces
Sevilla | 28 de mayo de 2024

Investigadores de las Universidades de Sevilla, Jaén y Cádiz participan en el proyecto ‘Desconéctate para Conectar: Fomentando un Estilo de Vida Activo y Saludable entre los Jóvenes Andaluces’ que buscará estrategias concretas para incentivar a estudiantes de secundaria, bachillerato y universidad a que cambien sus hábitos de uso de dispositivos móviles por actividades físicas.

Sigue leyendo
Descubren un nuevo gen que hace resistente al girasol contra la planta parásita jopo
Córdoba | 27 de mayo de 2024

Un equipo de investigación del Instituto de Agricultura Sostenible (IAS-CSIC) ha descrito una pieza del ADN que impide que las raíces de este cultivo sean infectadas por uno de sus patógenos más letales, el jopo. Además de determinar su posible función y la localización en su genoma, ha demostrado la posibilidad de transferirlo como mecanismo natural de defensa desde una especie silvestre a otras variedades de siembra.

Sigue leyendo
Un estudio del CSIC revela que zorzales, codornices y pinzones son las especies de aves más propensas a tener garrapatas
Sevilla | 27 de mayo de 2024

Un nuevo estudio liderado por la Estación Biológica de Doñana – CSIC ha analizado la prevalencia de garrapatas en más de 600.000 aves capturadas a lo largo de 17 años. Los resultados podrán ayudar a identificar en qué especies se deberían focalizar los esfuerzos de vigilancia de enfermedades zoonóticas. Los resultados de este trabajo se han publicado en la revista One Health.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido