Científicos de la Universidad de Granada descubren que los sistemas cuánticos se calientan más rápido de lo que se enfrían
Ese hallazgo clave, realizado por un equipo de físicos teóricos de la Universidad de Granada, tiene un impacto significativo en la comprensión teórica de la irreversibilidad y en el desarrollo de futuras tecnologías cuánticas. Este tipo de estudios pertenece al campo de la termodinámica cuántica, una disciplina en rápida expansión que busca entender cómo se combinan las leyes de la termodinámica con los principios fundamentales de la mecánica cuántica.
Fuente: Universidad de Granada
Investigadores de la Universidad de Granada y del Grupo de Termodinámica y Computación Cuántica de la Universidad de Granada han publicado en Physical Review Research un descubrimiento clave en el campo emergente de la termodinámica cuántica: los sistemas cuánticos se calientan más rápido de lo que se enfrían. Esta asimetría en los procesos de relajación térmica no solo desafía nuestra intuición, sino que tiene implicaciones directas para el diseño de algoritmos cuánticos, motores térmicos y dispositivos de control de energía a escala microscópica.
El estudio ha sido realizado por el investigador predoctoral de la UGR Álvaro Tejero, junto a los profesores Antonio Lasanta (de la Facultad de Educación, Economía y Tecnología de Ceuta, FEETCE) y Daniel Manzano, además del profesor Rafael Sánchez de la Universidad Autónoma de Madrid. El equipo ha analizado varios modelos fundamentales —como un sistema de dos niveles, un oscilador armónico cuántico y una partícula browniana cuántica— para mostrar que, incluso bajo condiciones controladas y simétricas, el proceso de calentamiento ocurre sistemáticamente a mayor velocidad que el de enfriamiento.
En la física clásica, esta asimetría ya se encontró experimentalmente en estudios anteriores. Esto incluye un trabajo publicado en Nature Physics por científicos de la propia Universidad de Granada, incluyendo a Antonio Lasanta, uno de los autores de la presente publicación. En el régimen cuántico, donde dominan efectos como la superposición de estados y la coherencia cuántica, las trayectorias térmicas hacia el equilibrio son más complejas y, en muchos casos, irreversibles.
“Hay muchos fenómenos en termodinámica cuántica del no-equilibrio que ni conocemos ni entendemos. El caso de la termalización es uno de ellos. Darles una respuesta fundamental es esencial para entender cómo los sistemas cuánticos interactúan con su entorno. Una vez lo logremos, las aplicaciones en tecnologías cuánticas son infinitas”, subraya Álvaro Tejero, primer autor de la publicación.
Para analizar estas dinámicas, el equipo utilizó herramientas avanzadas de física teórica, como la descomposición espectral del operador Liouvilliano, que describe cómo evoluciona un sistema cuántico abierto en contacto con su entorno. También aplicaron conceptos de geometría de la información y metrología cuántica, que permiten comparar con precisión las trayectorias seguidas por un sistema al cambiar de temperatura. Gracias a este enfoque, los autores no solo observaron el fenómeno, sino que lo explicaron y cuantificaron con una base matemática sólida.
Este tipo de estudios pertenece al campo de la termodinámica cuántica, una disciplina en rápida expansión que busca entender cómo se combinan las leyes de la termodinámica con los principios fundamentales de la mecánica cuántica. Además del interés conceptual, los resultados del equipo granadino tienen implicaciones prácticas. En computación cuántica, por ejemplo, es crucial enfriar los qubits a estados de muy baja entropía antes de realizar operaciones.
Si el enfriamiento es más lento que el calentamiento, los protocolos deberán ajustarse para compensar esta diferencia. También en el diseño de motores térmicos cuánticos —máquinas que extraen trabajo útil a partir de fluctuaciones térmicas en sistemas cuánticos—, conocer esta asimetría puede ayudar a optimizar la eficiencia energética.
Últimas publicaciones
La Fundación Descubre, promovida por la Consejería de Universidad, Investigación e Innovación, organiza y financia 54 encuentros con científicas en Sevilla, Granada, Cádiz y Almería con motivo del Día Internacional de la Mujer y la Niña en la Ciencia. La Comunidad autónoma celebra el 11 de Febrero con el lema ‘Sesgos de género en Inteligencia Artificial’ y más de 233 actividades organizadas por universidades y centros de investigación para visibilizar el talento de las mujeres en la ciencia, destacar referentes femeninos en ciencia e inspirar a las niñas a seguir carreras STEM.
Sigue leyendoUn estudio liderado desde el IRNAS-CSIC ha revelado que las áreas de máxima protección medioambiental (categorías I y II de la UICN) actúan como escudo frente a los efectos de la aridez y la sequedad en las tierras secas, que constituyen más del 41% del planeta. Los investigadores alerta de que tan solo un 7% de las tierras secas están actualmente bajo estas categorías.
Sigue leyendoUn equipo de investigación de la Universidad de Almería ha desarrollado un método para determinar la procedencia floral del producto mediante el análisis de las sustancias aromáticas y otros indicadores que completan su perfil químico. La técnica abre nuevas posibilidades para mejorar la trazabilidad, el control de calidad y la detección de fraudes alimentarios en el sector apícola.
Sigue leyendo



