VOLVER

Share

Científicos de la Universidad de Granada descubren que los sistemas cuánticos se calientan más rápido de lo que se enfrían

Ese hallazgo clave, realizado por un equipo de físicos teóricos de la Universidad de Granada, tiene un impacto significativo en la comprensión teórica de la irreversibilidad y en el desarrollo de futuras tecnologías cuánticas. Este tipo de estudios pertenece al campo de la termodinámica cuántica, una disciplina en rápida expansión que busca entender cómo se combinan las leyes de la termodinámica con los principios fundamentales de la mecánica cuántica.

Fuente: Universidad de Granada


Granada |
11 de abril de 2025

Investigadores de la Universidad de Granada y del Grupo de Termodinámica y Computación Cuántica de la Universidad de Granada han publicado en Physical Review Research un descubrimiento clave en el campo emergente de la termodinámica cuántica: los sistemas cuánticos se calientan más rápido de lo que se enfrían. Esta asimetría en los procesos de relajación térmica no solo desafía nuestra intuición, sino que tiene implicaciones directas para el diseño de algoritmos cuánticos, motores térmicos y dispositivos de control de energía a escala microscópica.

El estudio ha sido realizado por el investigador predoctoral de la UGR Álvaro Tejero, junto a los profesores Antonio Lasanta (de la Facultad de Educación, Economía y Tecnología de Ceuta, FEETCE) y Daniel Manzano, además del profesor Rafael Sánchez de la Universidad Autónoma de Madrid. El equipo ha analizado varios modelos fundamentales —como un sistema de dos niveles, un oscilador armónico cuántico y una partícula browniana cuántica— para mostrar que, incluso bajo condiciones controladas y simétricas, el proceso de calentamiento ocurre sistemáticamente a mayor velocidad que el de enfriamiento.

El investigador predoctoral de la UGR Álvaro Tejero junto al profesor Daniel Manzano.

En la física clásica, esta asimetría ya se encontró experimentalmente en estudios anteriores. Esto incluye un trabajo publicado en Nature Physics por científicos de la propia Universidad de Granada, incluyendo a Antonio Lasanta, uno de los autores de la presente publicación. En el régimen cuántico, donde dominan efectos como la superposición de estados y la coherencia cuántica, las trayectorias térmicas hacia el equilibrio son más complejas y, en muchos casos, irreversibles.

“Hay muchos fenómenos en termodinámica cuántica del no-equilibrio que ni conocemos ni entendemos. El caso de la termalización es uno de ellos. Darles una respuesta fundamental es esencial para entender cómo los sistemas cuánticos interactúan con su entorno. Una vez lo logremos, las aplicaciones en tecnologías cuánticas son infinitas”, subraya Álvaro Tejero, primer autor de la publicación.

Para analizar estas dinámicas, el equipo utilizó herramientas avanzadas de física teórica, como la descomposición espectral del operador Liouvilliano, que describe cómo evoluciona un sistema cuántico abierto en contacto con su entorno. También aplicaron conceptos de geometría de la información y metrología cuántica, que permiten comparar con precisión las trayectorias seguidas por un sistema al cambiar de temperatura. Gracias a este enfoque, los autores no solo observaron el fenómeno, sino que lo explicaron y cuantificaron con una base matemática sólida.

El profesor de la UGR Antonio Lasanta, uno de los autores del estudio.

Este tipo de estudios pertenece al campo de la termodinámica cuántica, una disciplina en rápida expansión que busca entender cómo se combinan las leyes de la termodinámica con los principios fundamentales de la mecánica cuántica. Además del interés conceptual, los resultados del equipo granadino tienen implicaciones prácticas. En computación cuántica, por ejemplo, es crucial enfriar los qubits a estados de muy baja entropía antes de realizar operaciones.

Si el enfriamiento es más lento que el calentamiento, los protocolos deberán ajustarse para compensar esta diferencia. También en el diseño de motores térmicos cuánticos —máquinas que extraen trabajo útil a partir de fluctuaciones térmicas en sistemas cuánticos—, conocer esta asimetría puede ayudar a optimizar la eficiencia energética.


Share

Últimas publicaciones

Diseñan un sistema inteligente de videovigilancia en tiempo real para aeropuertos
Málaga | 01 de mayo de 2025

Investigadores de la Universidad de Málaga han desarrollado un algoritmo de Inteligencia Artificial (IA) que realiza un agrupamiento no supervisado de objetos similares evitando el etiquetado manual. Este modelo es capaz de detectar una gran diversidad de elementos en la zona de pistas de un aeródromo, desde personas hasta aviones. Otra de las novedades es su optimización para ahorrar tiempo de cálculo y energía en las tareas de identificación, de forma que permite su uso en dispositivos de bajo consumo.

Sigue leyendo
Un nuevo estudio relaciona la exposición a bisfenoles presentes en alimentos con el sobrepeso en niñas
Granada | 30 de abril de 2025

El estudio, liderado por el Instituto de Investigación Biosanitaria de Granada con la participación de la Universidad de Granada, reveló que las niñas con mayor exposición al bisfenol A presentaban un riesgo casi tres veces mayor de desarrollar sobrepeso u obesidad. El hallazgo destaca la necesidad de seguir investigando sobre la relación entre contaminantes ambientales y enfermedades metabólicas para mejorar el bienestar de la población infantil.

Sigue leyendo
¿Cuál es la probabilidad de sufrir un apagón?
España | 30 de abril de 2025

Cuánta más demanda de electricidad, más posibilidades hay de un apagón. Un equipo español utilizó en 2016 datos de cortes de energía para hacer predicciones probabilísticas lo más precisas posibles sobre cuándo puede ocurrir. Sus conclusiones son más actuales que nunca. El mensaje ‘subliminal’ tras este trabajo es que las redes eléctricas deben ser sobredimensionadas para mantenerse alejadas de una posible inestabilidad. 

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido