VOLVER

Share

Desarrollan un modelo predictivo de ocupación de camas en las UCI de los hospitales andaluces

La herramienta matemática diseñada por investigadores de la Universidad de Cádiz está basada en una simulación de eventos discretos, unida a una predicción de futuros ingresos hospitalarios por causa de COVID-19. Así, para este modelo predictivo, se estiman las distribuciones de tiempos de estancia en UCI de los pacientes ya hospitalizados, además de la fracción de los mismos que requieren cuidados intensivos. El objetivo del modelo es la predicción de ocupación de camas UCI a varias semanas vista. 

Fuente: Universidad de Cádiz


Cádiz |
17 de abril de 2020

Investigadores de la Universidad de Cádiz trabajan en el desarrollo de una herramienta predictiva de ocupación de camas en Unidades de Cuidados Intensivos (UCI) de la red de hospitales de Andalucía. Su objetivo es ayudar de forma importante a la toma de medidas preventivas, como la creación de hospitales de campaña o la asignación de recursos hospitalarios, en el caso de que se originara un rebrote del número de pacientes afectados por COVID-19; algo que podría sobrecargar el Sistema Andaluz de Salud (SAS), como ha ocurrido en otras comunidades autónomas.

Esta herramienta ya ha sido puesta a disposición de la Junta de Andalucía y podría ser esencial para la toma de medidas preventivas y evitar una sobrecarga en el SAS en caso de que hubiese un rebrote de la pandemia.

Esta iniciativa ha sido posible gracias al trabajo del investigador David Gómez-Ullate, perteneciente al Comité Español de Matemáticas (CEMat), dedicado a coordinar la Acción matemática contra el coronavirus, y que es miembro del grupo científico creado para el mismo fin en la European Mathematical Society. Gómez-Ullate ha trabajado en esta ocasión junto con investigadores del grupo UCA Datalab y el ICMAT– CSIC (Instituto de Ciencias Matemáticas); miembros del departamento de Estadística e Investigación Operativa de la UCA, dirigido por el profesor Alfonso Suárez-Llorens; e investigadores del Instituto de Matemáticas de la Universidad de Sevilla.

Para entender bien este trabajo hay que tener en cuenta que la herramienta está basada en una simulación de eventos discretos, unida a una predicción de futuros ingresos hospitalarios por causa de COVID-19. Así, para este modelo predictivo, se estiman las distribuciones de tiempos de estancia en UCI de los pacientes ya hospitalizados, además de la fracción de los mismos que requieren cuidados intensivos.

El objetivo del modelo es la predicción de ocupación de camas UCI a varias semanas vista. El estudio de las distribuciones de tiempos entre la aparición de síntomas y hospitalización o ingreso en UCI puede ser igualmente útil para estimar el número real de infectados en Andalucía; dato esencial para poder alimentar los modelos epidemiológicos y diseñar estrategias efectivas de salida del confinamiento.

Gráfico de la ocupación de camas en la UCI de hospitales.

Esta herramienta matemática reporta las predicciones para cada provincia durante los próximos siete días. Los investigadores trabajan en actualizar las predicciones en un informe diario y mejorarlas con estimaciones más precisas de las distribuciones de tiempos. Para ello, se han establecido contactos con la Junta de Andalucía para la cesión de datos anonimizados de pacientes con su evolución clínica, así como para poner a disposición de las autoridades correspondientes este modelo predictivo.

Se debe indicar que herramientas similares se han desarrollado en la Universidad de Stanford, el Servicio Nacional de Salud (en inglés National Health Service – NHS) de Reino Unido o, a nivel nacional en otras comunidades autónomas como Navarra o el País Vasco. No obstante, la especificidad de la situación andaluza requiere que las distribuciones sean ajustadas a los datos observados en Andalucía, por lo que para el estudio preliminar han colaborado también diversos investigadores que han cedido datos observados en pacientes de otras comunidades. “Disponer de estos datos permitiría un mejor afinamiento de las predicciones y una herramienta más eficaz para la toma de decisiones”, como sostienen desde la UCA.

Las matemáticas aplicadas, la estadística y la ciencia de datos también juegan un papel importante en la lucha contra la expansión del coronavirus, ya que gracias a ellas se pueden modelar posibles estrategias, prediciendo el comportamiento futuro de la epidemia o proporcionando soluciones logísticas que optimicen el uso de los recursos disponibles.


Share

Últimas publicaciones

Diseñan un andador pediátrico que facilita la marcha y recaba datos clínicos fuera del entorno hospitalario
Málaga | 31 de mayo de 2025

Un equipo de la Universidad de Málaga ha desarrollado un dispositivo que permite introducir mejoras en la rehabilitación de la marcha de niños con parálisis cerebral y otras patologías neuronales que afectan a su movimiento. Sus principales ventajas son la recogida de datos objetivos en los entornos en los que transcurre su día a día a partir de sensores que recopilan información clínica durante 24 horas, así como la adaptación según el grado de afectación de cada enfermedad.

Sigue leyendo
Descubren cómo la actividad neandertal favoreció la formación de un raro mineral en la Cueva del Ángel de Lucena
Sevilla | 30 de mayo de 2025

Este hallazgo convierte a la Cueva del Ángel en uno de los pocos enclaves arqueológicos del mundo donde se ha identificado whitlockita, un mineral extremadamente raro en contextos arqueológicos sin la presencia de guano de murciélago, como ocurre en esta cueva. La investigación también ha permitido conocer que los neandertales eran unos hábiles cazadores de grandes animales y diestros fabricantes de útiles líticos.

Sigue leyendo
Un proyecto de ciencia ciudadana aplica una guía fácil para evaluar la biodiversidad del suelo
Sevilla | 29 de mayo de 2025

Investigadoras de la Universidad de Sevilla han co-liderado esta iniciativa donde alumnado del IES Virgen de Valme (Dos Hermanas) y la asociación Enredaos con la Tierra (La Puebla del Río) han desarrollado un método destinado a público no experto para medir la calidad y capacidad de descomposición de dos terrenos diferentes. Esta iniciativa forma parte de la Oficina de Ciencia Ciudadana de Andalucía, impulsada por la Consejería de Universidad, Investigación e Innovación y coordinada por Fundación Descubre y la Universidad Pablo de Olavide.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido