Dos matemáticos prueban unicidad para soluciones de la ecuación de Klein-Gordon
Fuente: Universidad de Sevilla
El Catedrático del Departamento de Análisis Matemático Alfonso Montes ha sido galardonado con el Premio Universidad de Sevilla a Trabajos de Investigación de Especial Relevancia en el Área de Ciencias por su trabajo en colaboración con Hakan Hedenmalm del Royal Institute of Technology of Stockholm Heisenberg uniqueness pairs and the Klein-Gordon equation. Este artículo científico se publicó en Annals of Mathematics en 2011, la revista quizás junto a Acta Mathematica más prestigiosa de esta área del conocimiento, y en el mismo se prueba que la solución de la ecuación de Klein-Gordon queda unívocamente determinada cuando se prescriben los valores sobre ciertos puntos bien localizados.
La ecuación de Klein-Gordon, llamada así en honor a los Físicos Oskar Klein y Walter Gordon, quienes en 1926 propusieron que la misma describe los electrones relativistas. Actualmente, es conocido que dicha ecuación es la ecuación del movimiento de los bosones sin espín, como es el caso del bosón de Higgs cuya existencia, aunque conjeturada en los años 60, tan sólo ha sido posible confirmarla este mismo año 2013. Montes y Hedenmalm también ponen en conexión su trabajo con el principio de incertidumbre de Heisenberg.
“Gracias a este nuevo avance matemático podemos conocer la información completa de una función a partir de una pequeña muestra o selección de datos siempre que la separación entre los puntos sea igual o inferior a 1, si por el contrario los valores son mayores que 1 entonces seguimos teniendo infinitas soluciones”, explica este investigador. En concreto, la ecuación de Klein-Gordon tiene asociada una hipérbola. Entonces basta conocer los valores de la función (definida en todo el plano) sobre los puntos señalados en azul en los ejes horizontal y vertical y siempre que la distancia entre los puntos del eje horizontal sea menor o igual a 1, para que la función, solución de la ecuación de Klein-Gordon, quede completamente determinada. En la figura de abajo se muestra el caso extremo en que la distancia entre los puntos es 1.
El grupo de investigación del profesor Montes sigue trabajando en esta línea y otras relacionadas, ya que han surgido “numerosos e interesantes problemas” relacionados con las soluciones de la ecuación de Klein-Gordon, algunos de ellos de Teoría de Números que permanecen abiertos desde los años 40´y aún se está estudiando cómo solucionarlos.
Fuente: Vicerrectorado de Investigación
Mª Carmen Escámez Almazo
comunicacioninves@us.es
Tfno.: 954550123
Móvil: 68201443
Últimas publicaciones
Un equipo de investigadores de la Universidad de Granada ha desarrollado una nueva Inteligencia Artificial para generar series temporales complejas utilizando modelos de difusión, una de las tecnologías más avanzadas dentro de la IA generativa actual. El estudio presenta Diff-TSD como un sistema innovador que trabaja con señales en tres ejes, como las que captan los acelerómetros y giroscopios de dispositivos móviles o wearables.
Sigue leyendoLa muestra permanecerá hasta el 31 de enero en Académie diplomatique internationale de Tunis.
Sigue leyendoInvestigadores de la Universidad de Almería y del grupo de investigación del profesor Manuel Alfonso Patarroyo, de la Fundación Instituto de Inmunología de Colombia (FIDIC), han dado un paso que podría ser crucial en la lucha contra la malaria al arrojar luz sobre una proteína esencial del parásito causante de esta enfermedad, el Plasmodium vivax. Este parásito sigue siendo una grave amenaza sanitaria en numerosos países, y la dificultad para desarrollar una vacuna eficaz se debe, en parte, a las lagunas que siguen existiendo en el conocimiento de su biología.
Sigue leyendo

