VOLVER

Share

El CSIC innova en la detección temprana de malas hierbas mediante drones

Fuente: CSIC


21 de enero de 2016

dronWInvestigadores del Instituto de Agricultura Sostenible del CSIC, en Córdoba, han mejorado su sistema para la detección temprana de malas hierbas mediante vehículos aéreos no tripulados. El nuevo método, basado en técnicas de análisis de imagen e inteligencia artificial, añade a la detección la discriminación de las malas hierbas dentro de las líneas de cultivo. El trabajo, publicado en la revista Expert Systems with Applications, podría ayudar a reducir el uso de herbicidas en toda la región de cultivo.

Según sus impulsores, el sistema puede dar una respuesta al agricultor “en un tiempo mínimo”. Los resultados muestran una precisión del 95% en cultivos de girasol y del 79% en maíz. “Además, las características óptimas que sirven para discriminar las malas hierbas coinciden en su mayoría para ambos cultivos”, indica la investigadora del CSIC María Pérez Ortiz.

Agricultura de precisión

Hasta ahora existían dificultades a la hora de crear mapas de malas hierbas a tiempo para un tratamiento optimizado con herbicidas. También era un problema la baja resolución de muchas de las plataformas aéreas que actualmente se emplean en teledetección.

“Uno de los retos actuales de la agricultura de precisión es la identificación temprana de malas hierbas, responsables de una gran reducción de la producción del cultivo. Normalmente, aunque se distribuyan en rodales, los herbicidas se aplican en todo el cultivo, lo que conlleva un perjuicio medioambiental y económico”, precisa Pérez Ortiz.

El proceso para obtener estos mapas, que se enmarca dentro de las líneas de trabajo del proyecto imaPing, consiste en adquirir primero las imágenes desde el aire mediante una cámara de alta resolución instalada en los drones; en segundo lugar, se lleva a cabo la segmentación de la imagen y el etiquetado. Y, finalmente, se aplica una técnica de clasificación que se engloba dentro de la inteligencia artificial.

En investigaciones anteriores, el grupo liderado por la investigadora del CSIC Francisca López-Granados obtuvo mapas de malas hierbas con precisiones similares. Esta vez, los científicos han abordado el problema de una forma nueva para poder detectar también las malas hierbas que están en la línea de cultivo, lo que en anteriores investigaciones no había sido posible.

Los investigadores han demostrado que el uso de este sistema “se adapta a la perfección al cambio en factores tales como la altura de vuelo, la iluminación, el cultivo y la cámara usada”. Esta adaptabilidad facilitaría la adopción de la técnica por parte de cualquier agricultor.

  • María Pérez-Ortiz, José Manuel Peña, Pedro Antonio Gutiérrez, Jorge Torres-Sánchez, César Hervás-Martínez, Francisca López-Granados. Selecting patterns and features for between- and within- crop-row weed mapping using UAV-imagery. Expert Systems with Applications. DOI: 10.1016/j.eswa.2015.10.043

Share

Últimas publicaciones

Desarrollan un método sencillo y económico para identificar vinos generosos y evitar fraudes
Sevilla | 24 de mayo de 2024

Un equipo de investigación de la Universidad de Sevilla ha creado un nuevo modelo de análisis que permite su reconocimiento. Diferencia el lugar de procedencia y la crianza de una manera sencilla, lo que permite detectar posibles fraudes y mejorar la catalogación de los distintos tipos.

Sigue leyendo
La muestra Paseo Matemático al-Ándalus llega a Nador
Nador | 24 de mayo de 2024

El Instituto Español Lope de Vega de Nador acoge  la exposición ‘Paseo matemático al- Ándalus’, una muestra que […]

Sigue leyendo
La Fundación Descubre llenará de ciencia el verano en Andalucía
Andalucía | 23 de mayo de 2024

Abierta la convocatoria para participar en la cuarta edición del programa de actividades estivales `Ciencia al Fresquito 365. ¡Llegó el verano!´. Las acciones se llevarán a cabo del 1 de julio al 30 de septiembre.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido