VOLVER

Share

El reactor de fusión nuclear tokamak SMART de la Universidad de Sevilla genera su primer plasma

Este avance supone un hito en el camino para lograr el dispositivo de fusión más compacto posible, uno de los principales objetivos de los investigadores del Laboratorio de Ciencia del Plasma y Tecnología de Fusión de la Universidad de Sevilla que desarrollan este proyecto. Este paso acerca a la comunidad internacional a la energía de fusión: una fuente de energía sostenible limpia y prácticamente ilimitada.

Fuente: Universidad de Sevilla


Sevilla |
21 de enero de 2025

En el marco de un proyecto pionero en el camino hacia el desarrollo de la energía de fusión, el tokamak SMART ha generado con éxito su primer plasma. Este paso acerca a la comunidad internacional a la energía de fusión; una fuente de energía sostenible limpia y prácticamente ilimitada.

El tokamak SMART es un dispositivo de fusión experimental de última generación diseñado, construido y operado por el Laboratorio de Ciencia del Plasma y Tecnología de Fusión de la Universidad de Sevilla. Se trata de un tokamak esférico único en el mundo debido a su flexibilidad para generar plasmas con distintas formas. SMART ha sido diseñado para demostrar las propiedades físicas e ingenieriles únicas que los plasmas con forma de Triangularidad Negativa tienen en el camino hacia el desarrollo de plantas de energía de fusión compactas basadas en Tokamaks Esféricos.

El profesor Manuel García Muñoz, Investigador Principal del tokamak SMART, ha afirmado que “este es un logro importante para todo el equipo; entramos en la fase operativa de SMART». SMART explora un camino potencialmente revolucionario al combinar plasmas de fusión de alto rendimiento con atractivas soluciones para su implementación en reactores de fusión super compactos.

Render del Tokamak SMART con un plasma de triangulación negativa en el interior

Por su parte, la profesora Eleonora Viezzer, co-IP del proyecto SMART, añade que “todos estábamos muy emocionados de ver el primer plasma confinado magnéticamente y estamos deseando explotar las capacidades del dispositivo SMART junto con la comunidad científica internacional. SMART ha despertado un gran interés en todo el mundo».

Cuando lo negativo se vuelve positivo

La triangularidad describe la forma del plasma. La mayoría de los tokamaks funcionan con triangularidad positiva, lo que significa que la forma del plasma parece una D. Si la forma del plasma se asimila a una D invertida (como se muestra en la figura de abajo), tiene Triangularidad Negativa.

Los plasmas con forma de Triangularidad Negativa presentan un rendimiento mejorado ya que suprimen las inestabilidades que degradan el confinamiento del reactor, evitando daños graves a la pared del tokamak. Además de ofrecer un alto rendimiento de fusión, la Triangularidad Negativa también presenta soluciones atractivas para el control de la potencia generada en las reacciones de fusión, dado que el calor que escapa se distribuye en un área mayor. Esto también facilita el diseño para futuras centrales eléctricas de fusión más compactas y eficientes.

SMART es el primer paso en la estrategia Fusion2Grid, liderada por el equipo PSFT y en colaboración con la comunidad internacional de fusión, que tiene como objetivo el diseño de la planta de potencia basada en fusión por confinamiento magnético más compacta y eficiente usando Tokamaks Esféricos con forma de Triangularidad Negativa. SMART será el primer Tokamak Esférico compacto que funcionará a temperaturas de fusión con plasmas con forma de Triangularidad Negativa.

El objetivo de SMART es proporcionar la base tanto científica como tecnológica para el diseño del reactor de fusión más compacto posible combinando tres tecnologías; tokamaks esféricos, triangularidad negativa y alto campo magnético. Este primer plasma inducido por el solenoide representa un logro importante para el proyecto SMART, así como para avanzar hacia el dispositivo de fusión más compacto posible.

Referencia:

D.J. Cruz-Zabala*, M. Podestàa, F. Polib, S.M. Kaye, M. Garcia-Munoz, E. Viezzer and J.W. ‘Performance prediction applying different reduced turbulence models to the SMART tokamak’ Nuclear Fusion, Volume 64, Number 12.


Share

Últimas publicaciones

Obtienen una salsa saludable a partir de vaina de guisante
Sevilla | 20 de diciembre de 2025

Un equipo de investigación andaluz ha obtenido este aderezo para ensalada a base fibra de esta leguminosa sin ningún aditivo químico para estabilizarlo. Para ello, transforman las propiedades iniciales de la fibra de la vaina con altas presiones, obligándolo a fluir a través de una serie de microcanales. Así, sus propiedades iniciales se transforman para retener más agua y mantener el alimento estable más tiempo, añadiéndole ventajas nutricionales. 

Sigue leyendo
La Fundación Descubre impulsará en 2026 la consolidación de ReDescubre, la divulgación de los eclipses y la reactivación de la Red de Ferias
Andalucía | 18 de diciembre de 2025

El secretario general de Investigación e Innovación de la Consejería de Universidad ha presidido en Sevilla el Patronato de la entidad. El impulso a la comunicación social de la ciencia y la innovación con nuevas narrativas digitales y la incorporación de la IA son las principales apuesta del Plan, alineado con la Ley ACTIVA.

Sigue leyendo
Señalan la importancia de considerar las diferencias entre individuos para conservar la biodiversidad
Sevilla | 17 de diciembre de 2025

Predecir cómo responderá la biodiversidad ante el cambio global requiere estudiar más allá de la especie como unidad básica y tener en cuenta la variabilidad individual. Así lo indica un equipo de científicos de la Estación Biológica de Doñana-CSIC en una investigación publicada en la revista Ecological Monographs.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido