Emplean técnicas de ‘big data’ para capturar y almacenar dióxido de carbono procedente de una central térmica
El científico de la Universidad de Granada (UGR) Jorge Rodríguez Navarro, investigador del departamento de Química Inorgánica, ha participado en un estudio internacional publicado en la revista Nature en el que se han utilizado técnicas de Big Data para seleccionar un material óptimo para la captura de CO2 de una biblioteca virtual de más de 300.000 materiales de tipo red metalorgánica.
Fuente: Universidad de Granada
El cambio climático parece estar relacionado con la emisión antropogénica de dióxido de carbono procedente del uso intensivo de combustibles fósiles. En este sentido, el desarrollo de tecnologías eficientes para la captura y el almacenamiento de dióxido de carbono se presenta como la solución más viable.
El científico de la Universidad de Granada (UGR) Jorge Rodríguez Navarro, investigador del departamento de Química Inorgánica, ha participado en un estudio internacional publicado en la revista Nature en el que se han utilizado técnicas de Big Data para seleccionar un material óptimo para la captura de CO2 de una biblioteca virtual de más de 300.000 materiales de tipo red metalorgánica.
Los resultados muestran que los materiales reportados superan el comportamiento de materiales porosos clásicos, tales como zeolitas y carbones activados, en condiciones típicas de captura de CO2 de una central térmica.
La metodología de un fármaco
La metodología empleada se asemeja a la usada en la selección de fármacos por la industria farmacéutica, en la que se busca un fármaco que se ajuste al centro activo de una proteína causante de una enfermedad.
En este caso, la molécula objetivo es conocida (el CO2), mientras que el material óptimo no lo es. “Esta técnica de big data ha permitido reconocer el centro activo que presentan los materialescon mejor comportamiento y para el cual se ha acuñado la denominación de adsorbaforo”, señala el autor.

Estructura del centro activo Adsorbaforo para la molécula de CO2 consistente en dos anillos aromáticos separados por 7 amstrongs y que son capaces de encapsular selectivamente una molécula de CO2 a modo de un sándwich molecular.
Dicho adsorbaforo de la molécula de CO2 consiste en dos anillos aromáticos separados por 7 amstrongs y que son capaces de encapsular selectivamente una molécula de CO2 a modo de un ‘sándwich’ molecular (ver figura).
Una vez seleccionados los materiales teóricos óptimos, estos se han sintetizado de forma dirigida y estudiado su comportamiento en la captura de CO2.
Últimas publicaciones
Un equipo de investigación de la Universidad de Sevilla ha identificado un sistema rápido, no destructivo y que puede emplearse 'in situ' en las bodegas para seleccionar orujo de la uva blanca y reutilizarlos para disminuir hasta un 50% la aspereza de este producto vitivinícola.
Sigue leyendoLa Sociedad Andaluza para la Divulgación de la Ciencia y la Fundación Descubre, promovida por la Consejería de Universidad, Investigación e Innovación, organizan este foro de ideas en el que un grupo de estudiantes aborda temas científicos relacionados con el calentamiento global y la crisis ambiental.
La clausura de esta iniciativa, en la que se celebra la asamblea final, ha estado presidida por el consejero de Universidad, Investigación e Innovación, José Carlos Gómez Villamandos, y la vicepresidenta del Parlamento de Andalucía Ana Mestre.
Se trata de una lámina delgada que recubre nanogeneradores que producen electricidad mediante el impacto de las gotas de lluvia. Además, al mismo tiempo, mejora la durabilidad de las celdas fotovoltaicas. El trabajo, desarrollado por el Instituto de Ciencia de Materiales de Sevilla (ICMS) abre nuevas vías para desarrollar sistemas electrónicos autónomos destinados a ser utilizados en exteriores.
Sigue leyendo


