VOLVER

Share

Establecen prácticas sostenibles y desarrollan genotipos de olivo resistentes a la bacteria Xylella

El objetivo principal de este proyecto, en el que participa la Universidad de Córdoba, es desarrollar ecosistemas resilientes en cultivos leñosos en sistema intensivo que sean resistentes a una posible infección por la batería a través de prácticas sostenibles y el desarrollo de nuevas variedades de olivo resistentes a Xylella fastidiosa.

Fuente: Universidad de Córdoba


Córdoba |
06 de febrero de 2020

En 2013 se detectó el primer olivo infectado por Xylella fastidiosa en el sur de Italia y se desató la voz de alarma: empezaron a decaer olivos centenarios en masa. Históricamente, esta bacteria había afectado a la vid o almendros, cerezos y demás especies del género prunus. El desconocimiento de su actuación en olivos unida a la importancia que tiene este cultivo en el sector económico del mundo mediterráneo puso en alerta a los países olivareros. Las drásticas medidas de contención, basadas en talas de todas las plantas situadas a 100 metros a la redonda de donde aparecía una planta infectada para evitar la propagación, dejaron un escenario devastado en el que se reclamaba una actuación inminente.

Campos de olivos.

En este contexto surge el proyecto LIFE Resilience, coordinado por la empresa Galpagro y en el que participa el grupo de investigación de ‘Recursos genéticos y mejora del olivo’ de la Universidad de Córdoba, liderado por el catedrático de Producción Vegetal, Diego Barranco. El objetivo principal de este proyecto es desarrollar ecosistemas resilientes en cultivos leñosos en sistema intensivo que sean resistentes a una posible infección por la batería a través de prácticas sostenibles y el desarrollo de nuevas variedades de olivo resistentes a Xylella fastidiosa.

Para la consecución de estos objetivos, en primer lugar, hay que conocer cómo actúa la bacteria. A pesar de que todavía se está caracterizando su comportamiento, se conoce que esta bacteria tiene muchos huéspedes asintomáticos (plantas donde se aloja, pero que no muestran síntomas) como especies silvestres y ornamentales, por lo que es difícil su detección y control. Además, necesita de un vector, es decir, un insecto extrae de la planta infectada el patógeno y lo transporta a la planta sana, infectándola. Esto sumado a la adaptación de la bacteria por los climas templados, como el del sur de Italia, es lo que hizo que se desencadenase la catástrofe: gran población del vector, plantas huéspedes, clima templado y una cepa muy virulenta.

Evitando que se dé un escenario como el italiano, los olivares del mediterráneos estarían más seguros ante una posible llegada de Xylella. Para ello, los equipos de investigación de LIFE Resilience trabajan en la inclusión de cubiertas vegetales que atraigan fauna que controle al insecto vector, a la par que aumente la biodiversidad del olivar manteniendo el equilibrio de poblaciones. Además, se trabaja en estrategias de riego deficitario y disminución de la huella de carbono buscando así olivares en intensivo que sean menos extractivos y más sostenibles.

En el equipo cordobés, los investigadores Concepción Muñoz y Pedro Valverde trabajan en la mejora genética del olivo a través de la creación de nuevas variedades que sean resistentes a la bacteria. Tras identificar variedades resistentes en la zona italiana infectada como Leccinoy Fs-17 se han realizado cruzamientos entre estas variedades y otras con buenas características agronómicas, ya que a los productores además de la resistencia a Xylella les interesa que el rendimiento y producción del olivar también sean altos y que los portes del olivar sean manejables.

Integrantes del proyecto LIFE RESILIENCE.

La experiencia en mejora genética y contar con protocolos de germinación de plántulas, crecimiento en invernaderos y un proceso de selección muy ensayado por parte del grupo de la UCO es lo que ha permitido el avance del proyecto. De hecho, previo al inicio del proyecto, el grupo de investigación  ya había realizado los primeros cruzamientos en busca de variedades resistente a Xylella, que han sido plantados en la finca ‘El Valenciano’ de la empresa Galpagro, la principal finca experimental del proyecto.

Primero se realizarán pruebas en una selección de parcelas piloto en España, Italia y Portugal para, posteriormente, replicar las más exitosas en un número mayor de parcelas, pasando así un doble filtro.
El grupo de la UCO ha firmado un acuerdo con agricultores de la zona italiana para enviar los genotipos al escenario infectado y comprobar, finalmente, que son resistentes al patógeno. Así, el final de escenarios apocalípticos de infección estaría más cerca.


Share

Últimas publicaciones

Descubren un nuevo gen que hace resistente al girasol contra la planta parásita jopo
Córdoba | 27 de mayo de 2024

Un equipo de investigación del Instituto de Agricultura Sostenible (IAS-CSIC) ha descrito una pieza del ADN que impide que las raíces de este cultivo sean infectadas por uno de sus patógenos más letales, el jopo. Además de determinar su posible función y la localización en su genoma, ha demostrado la posibilidad de transferirlo como mecanismo natural de defensa desde una especie silvestre a otras variedades de siembra.

Sigue leyendo
Un estudio del CSIC revela que zorzales, codornices y pinzones son las especies de aves más propensas a tener garrapatas
Sevilla | 27 de mayo de 2024

Un nuevo estudio liderado por la Estación Biológica de Doñana – CSIC ha analizado la prevalencia de garrapatas en más de 600.000 aves capturadas a lo largo de 17 años. Los resultados podrán ayudar a identificar en qué especies se deberían focalizar los esfuerzos de vigilancia de enfermedades zoonóticas. Los resultados de este trabajo se han publicado en la revista One Health.

Sigue leyendo
Una nueva investigación liderada por la Universidad de Córdoba desvela que las cianobacterias marinas se comunican
Córdoba | 27 de mayo de 2024

La revista Science Advances acaba de publicar una investigación que da un giro a la forma de entender la cianobacterias, indispensables para el sustento de la vida. El estudio evidencia que estos organismos no operan de forma aislada, sino que interaccionan físicamente a través de unos nanotubos que actúan como puente de intercambio entre células.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido