Estructuras ‘titánicas’ porosas para regenerar huesos
Fuente: José T. del Pozo / Fundación Descubre
Investigadores del Laboratorio de Bioingeniería y Regeneración Tisular (LABRET), ubicado en el Centro Andaluz de Nanomedicina y Biotecnología (BIONAND) de la Universidad de Málaga, han desarrollado nuevas estructuras de titanio poroso que mejoran la integración de las prótesis tras una fractura (lo que se conoce como artroplastia) y favorecen la recuperación ósea. Según apuntan los expertos, el uso de este tipo de prótesis contribuirá a impedir los problemas normalmente asociados al titanio macizo, ya que éste en ocasiones no es capaz de integrarse en el hueso y puede provocar, además de un posible rechazo por parte del organismo, el “aflojamiento” de la prótesis.
Asimismo, los investigadores también han diseñado nuevas biomoléculas capaces de señalizar a las células encargadas de la regeneración ósea el camino más directo hacia las zonas donde existe el problema y es necesaria la nueva fabricación de hueso. De este modo, la estructura porosa permite que estos ‘señalizadores’ puedan anclarse entre sus poros y dirigir a las células para que éstas ocupen dichos huecos, mejorando con ello su eficiencia y reduciendo el coste final de la intervención.
“Empleamos este tipo de material ya que deja entre sus poros hasta un 80% del volumen vacío sin llegar a comprometer su estabilidad mecánica. Es decir, estos huecos se rellenan de hueso nuevo, la fijación de la prótesis es mayor y su integración más firme”, explica a la Fundación Descubre el responsable principal del proyecto, José Becerra, catedrático de la Universidad de Málaga y director de BIONAND.
En el artículo ‘A collagen-targeted biomimetic RGD peptide to promote osteogenesis’, publicado en la revista Tissue Engineering, los expertos señalan que este proceso favorece la recuperación ósea gracias al uso de ciertas biomoléculas, denominadas BMPs, capaces de dirigir, de manera más eficiente, a las células responsables de regenerar los huesos en el organismo. “Al emplear estos señalizadores en concentraciones más bajas evitamos los inconvenientes procedentes del uso de grandes cantidades de estas biomoléculas como, por ejemplo, el alto precio de la intervención y su expansión por la circulación sanguínea más allá del lugar idóneo para reparar el defecto óseo”, argumenta Becerra.
Un producto patentado
Para llegar a estas conclusiones, los expertos diseñaron y patentaron, en primer lugar, las biomoléculas encargadas de señalizar a las células responsables de formación ósea las zonas donde se ha producido la fractura. “A continuación, desarrollamos, mediante ingeniería de tejidos, una prótesis experimental de titanio poroso para colocar sobre el hueso de un animal de experimentación en el que se había practicado un defecto”, sostiene Becerra.
Y añade: “El siguiente paso es rellenar con colágeno cada uno de los poros de la prótesis de titanio, a los que se fijan las proteínas osteoinductoras encargadas de favorecer la adherencia de las células osteogénicas, es decir, de aquellas que se encargan de fabricar o reparar el hueso cuando se producen fracturas”.
Finalmente, tras implantar los nuevos señalizadores en los poros previamente rellenados con colágeno, los expertos emplearon diversas técnicas de laboratorio para comprobar si efectivamente existía una mejora en el proceso de formación del hueso.
Nuevos horizontes ortopédicos
Una de las principales aplicaciones que surgen a partir de este estudio, que ya se está desarrollando en el Centro Andaluz de Nanomedicina y Biotecnología en colaboración con el Instituto Tecnológico de Canarias (ITC), es la posibilidad de emplear estos señalizadores en fracturas de hueso difíciles de unir o en lesiones de columna que precisan estabilización. “Estos resultados, una vez que se compruebe su utilidad en personas, permitirán que tanto la fijación de la prótesis como su integración en el hueso dañado sean mucho más eficientes y duraderas”, expone Becerra.
Estos datos, según apuntan los investigadores, han permitido a los expertos abrir nuevas líneas de trabajo con el objetivo de profundizar en el estudio de la formación de hueso y su integración con el paciente a lo largo del tiempo. “El siguiente paso será comprobar en modelos animales su funcionamiento en dos situaciones patológicas muy frecuentes en seres humanos como son los defectos mandibulares, que actualmente desarrollamos en conejos y los problemas de cadera, que probaremos en ovejas”, apostilla.
Referencias:
Visser R, Arrabal PM, Santos-Ruiz L, Fernandez-Barranco R, Becerra J, Cifuentes M. (2014). ‘A collagen-targeted biomimetic RGD peptide to promote osteogenesis’. Tissue Engineering, 20 (1-2):34-44.
Más información:
El LABRET es miembro del Ciber-bbn y de la Red de Terapia Celular, ambas instituciones del Instituto de Salud Calos III. Así mismo pertenece al Instituto de Investigación Biomédica de Málaga (IBIMA)
Imágenes:
Investigadores del Laboratorio de Bioingeniería y Regeneración Tisular (LABRET)
https://www.flickr.com/photos/fundaciondescubre/15654461531/
Implantes de titanio poroso
https://www.flickr.com/photos/fundaciondescubre/15470504059/
Modelo de prótesis de mandíbula en conejo
https://www.flickr.com/photos/fundaciondescubre/15470503929/
Más información:
FUNDACIÓN DESCUBRE
Departamento de Comunicación
Teléfono: 954232349. Extensión 140
e-mail: comunicacion@fundaciondescubre.es
Página web: www.fundaciondescubre.es
www.facebook.com/cienciadirecta
@cienciadirecta
Últimas publicaciones
Talleres, rutas, jornadas y exposiciones organizados por 185 instituciones en las 8 provincias han conformado la oferta de esta edición, en la que han participado 28.062 personas.
Sigue leyendoUn equipo de investigación de la Universidad de Málaga ha verificado el uso conjunto de tres cepas de Pseudomonas, un tipo de microorganismo, para que la planta no sufra con la subida del nivel térmico que conlleva el aumento de temperatura ambiental. Los expertos ponen a disposición de los agricultores una herramienta que lucha contra patógenos, al mismo tiempo que protege contra el calor.
El Ayuntamiento de Sevilla ha acogido el II Consejo de alcaldes de la Comunidad de Ciudades Ariane (CVA), un evento clave para la cooperación entre ciudades en el ámbito espacial europeo y que ha servido para hacer entrega del testigo de la presidencia a Fabian Jordan, presidente de Mulhouse Alsace Agglomération y encargado de ejercer la Presidencia de Ciudades Ariane en 2025.
Sigue leyendo