VOLVER

Share

Un mecanismo que preserva la integridad genómica está alterado en el Síndrome de DiGeorge

Fuente: Universidad de Granada


06 de septiembre de 2013
Los investigadores del centro GENYO, José Luis García Pérez y Sara Rodríguez Heras, autores de este trabajo

Los investigadores del centro GENYO, José Luis García Pérez y Sara Rodríguez Heras, autores de este trabajo

Un equipo internacional de científicos, entre los que se encuentran investigadores del Centro de Genómica e Investigación Oncológica GENYO (Pfizer-Universidad de Granada-Junta de Andalucía), ha descrito un mecanismo molecular que permite defender la integridad del genoma humano del “bombardeo” de secuencias de ADN móviles. Alteraciones en este mecanismo podrían ser responsables de parte de la sintomatología del Síndrome de DiGeorge, una enfermedad rara. Este trabajo podría servir en el futuro para desarrollar nuevas terapias contra esta enfermedad, causada por la microdelección de una pequeña parte del cromosoma 22.

Su investigación, que publica esta semana la prestigiosa revista NatureStructural and Molecular Biology, ha descrito un sofisticado mecanismo que permite a todas nuestras células controlar el movimiento descontrolado de fragmentos de ADN móviles en nuestros genomas. Las células de los pacientes con DiGeorge presentan alteraciones en este mecanismo de control. En la actualidad, estos científicos están intentando generar células madres que “padecen” esta enfermedad a partir de células donadas por pacientes que la sufren, algo que permitiría clarificar la base molecular de esta compleja patología.

El síndrome de DiGeorge, también conocido como deleción 22q11.2, es la enfermedad genética producida por una microdelección cromosómica más frecuente en humanos. Presenta una prevalencia estimada de uno cada cuatro mil nacimientos, y sus síntomas son muy diversos, siendo característicos problemas cardíacos e inmunológicos así como dificultades de aprendizaje, retraso mental y trastornos psiquiátricos.

Esta enfermedad se caracteriza por la ausencia del complejo de proteínas “Microprocessor”, lo que significa que  estos pacientes carecen del gen “vigilante” de las secuencias repetidas, y por tanto, sus células son potencialmente susceptibles de ser “bombardeadas” por estos fragmentos de ADN.

La clave, el “Microprocessor”

Como explica Sara Rodríguez Heras, coautora del trabajo e investigadora del centro GENYO, todas nuestras células contienen “Microprocessor”, un complejo de proteínas cuya función conocida hasta el momento es la de generar pequeñas moléculas de ácido ribonucleico (RNA) reguladoras, conocidas como microRNAs. “Nuestro trabajo ha demostrado que este complejo actúa también como vigilante y defensor de la integridad del genoma humano. Así, estas proteínas son capaces de reconocer y fragmentar las secuencias de ADN repetidas que escapan a mecanismos de control previos, impidiendo así que se repliquen y se introduzcan en el genoma”.

En el artículo publicado en Nature Structural and Molecular Biology, la doctora Heras y sus colaboradores han descrito un nuevo mecanismo mediante el que la mayoría de células humanas pueden evitar ser “bombardeadas” por estos fragmentos de DNA. Este estudio ha sido realizado en el laboratorio del Dr. José Luis García Pérez en Genyo (Granada) en colaboración con el laboratorio del Dr. Javier Cáceres “Medical Research Council-Human GeneticUnit” de Reino Unido (Edimburgo) y el laboratorio del Dr. Eduardo Eyras en la Universidad Pompeu Fabra de Barcelona.

Modelo embrionario

En estos nuevos estudios, los autores están empleando un modelo embrionario de células pluripotenciales inducidas (o iPSCs por sus siglas en ingles inducedpluripotentstemcells). Es decir, a partir de células donadas por pacientes con Síndrome de DiGeorge se generan células madre que “padecen” la enfermedad. Éste es un modelo ideal para determinar el impacto de las secuencias repetidas desde que se genera la deleción que da lugar a esta patología. Es decir, desde la fase embrionaria. Se prevé que dichos estudios clarificarán la base molecular de esta enfermedad tan compleja, así como permitirán, a largo plazo, el desarrollo de nuevas terapias para su tratamiento.

El trabajo publicado en Nature Structural and Molecular Biology, así como la investigación actual en el Síndrome de DiGeorge, ha sido y es en la actualidad parcialmente financiado por el séptimo programa marco europeo Marie Curie CIG-Grant (PCIG-GA-2011-303812). Además, estos y otros estudios del laboratorio del Dr. Garcia-Perez en Genyo están financiados por el Ministerio de Sanidad (FIS-FEDER-PI11/01489), la Consejería de Innovación y Ciencia de la Junta de Andalucía (CICE-FEDER-P09-CTS-4980), la Consejería de Salud de la Junta de Andalucía (PeS-FEDER-PI-002), por el prestigioso instituto médico americano “Howard Hughes Medical Institute” (IECS-55007420), y por el “European Research Council” (ERC-Starting-2012-LS1-EPIPLURIRETRO-339064).

Referencia bibliográfica:

“The Microprocessor controls the activity of mammalian retrotransposons” Nature Structure and Molecular Biology (2013). Sara R Heras, Sara Macías, Mireya Plass, Noemí Fernández, David Cano, Eduardo Eyras, José L. García Pérez y Javier F. Cáceres.10.1038/nsmb.2658


Share

Últimas publicaciones

Identifican compuestos con actividad antitumoral en una nueva variedad de berenjena
Granada | 12 de enero de 2026

Un estudio desarrollado por la Universidad de Granada y el ibs.GRANADA, con la colaboración de la Fundación Cellbitec, demuestra la eficaciade los extractos de semilla de la berenjena S0506 frente al cáncer de colon, tanto en laboratorio como en modelos animales.

Sigue leyendo
Obtienen cereales resistentes a la sequía y con bajo contenido en gluten
Córdoba | 10 de enero de 2026

Un equipo de investigación del Instituto de Agricultura Sostenible del CSIC de Córdoba ha confirmado la mejora en la respuesta al estrés hídrico de un tipo de trigo con bajo contenido en este alérgeno. Los resultados obtenidos mediante técnicas genéticas abren nuevas vías para la elaboración de productos sin este compuesto a partir del mismo cultivo.

Sigue leyendo
Detectan con inteligencia artificial que el 78% de los canales de editoriales científicas en Telegram son falsos
Granada | 09 de enero de 2026

Una investigación de la Universidad de Granada constata un ecosistema digital distorsionado por la suplantación y señala el potencial de los modelos de lenguaje ChatGPT y DeepSeek como herramientas de monitorización, aunque con limitaciones.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido